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/. Introduction 

One of the first things to be clear about before 
making a thermodynamic measurement, an equilib
rium calculation, or a statistical mechanical predic
tion is the answer to the question "What are the 
independent variables?" Gibbs1 showed that the 
number of independent variables can be calculated 
by use of the phase rule, but the choice of indepen
dent variables is to some extent arbitrary. A major 
reason for selecting one independent variable over 
another is simply convenience. It is easy to hold the 
temperature constant and impossible to hold the 
entropy constant, except in adiabatic processes. It 
is easier to hold the pressure of a liquid constant than 
to hold the volume constant when the temperature 
is varied. However, there is a more insightful way 
to put the above question, and that is "What are the 
natural variables?" To explain what natural vari
ables are, we start with the combined first and second 
laws for a closed system involving only PV work: 

dU = TdS -PdV (1-1) 

Here U is the internal energy and S is the entropy. 
The natural variables for the internal energy are S 
and V because their differentials are on the right side 
of eq 1-1. If U could be determined as a function of 
S and V, then T and P could be obtained by taking 
partial derivatives of U with respect to S and V. If 
this could be done, we would have all of the thermo
dynamic properties of the system. The natural 
variables are also important because they are the 
variables that are held constant in stating the equi
librium condition in terms of the thermodynamic 
potential on the left side. The fundamental equation 
for U can be used to derive two criteria for equilib-
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rium and spontaneous change in a closed system 
involving only PV work. The internal energy can be 
used when the entropy and the volume are held 
constant; (dlDsy ^ 0. Under these conditions the 
internal energy can only decrease, and the equality 
applies at equilibrium because the internal energy 
is at a minimum. This criterion is not very useful in 
chemistry because there is no way to hold the entropy 
constant. The entropy can be used to state a criterion 
for spontaneous change when the internal energy and 
volume are constant: (dS)uy ^ 0. Under these 
conditions the entropy can only increase, and the 
equality applies at equilibrium. This criterion ap
plies to isolated systems because the internal energy 
and volume are constant, but the use of this criterion 
for systems at constant temperature and constant 
pressure is difficult because heat and pressure res
ervoirs have to be included in the isolated system in 
addition to the system of interest. Equation 1-1 
shows that the variables come in conjugate pairs (T, 
S and P, V) in which one variable is intensive (T and 
P) and the other is extensive (S and V); note that the 
natural variables for U are both extensive. 

Legendre transforms are important because they 
provide the way to solve the problems mentioned in 
the preceding paragraph. A Legendre transform is 
a linear change in variable that involves adding or 
subtracting the product of conjugate variables from 
an extensive property of a system. The enthalpy, H, 
the Helmholtz energy, A, and the Gibbs energy, G, 
are defined by use of the following Legendre trans
forms: 

H=U + PV (1-2) 

A = U-TS (1-3) 

G = U+ PV-TS (1-4) 

Note that we are going to stick with these definitions 
throughout this paper and recommend that they not 
be altered. These simple linear transformations have 
remarkable effects on the fundamental equation. To 
see this, consider the enthalpy. To obtain the fun
damental equation for the enthalpy, we take the 
differential of H in eq 1-2: 

dH = dU + PdV+VdP (1-5) 

Substituting eq 1-1 yields the fundamental equation 
for the enthalpy of a closed system involving only PV 
work: 

dH = TdS + VdP (1-6) 

Note that the PV term in eq 1-2 led to a V dP term in 
eq 1-6, so that there is now a term proportional to 
the differential of an intensive variable P in a 
fundamental equation, rather than a term propor
tional to the differential of an extensive variable V, 
as in eq 1-1. In other words, the Legendre transform 
in eq 1-2 has interchanged the roles of P and V by 
making P a natural variable, rather than V. The 
fundamental equations for A and G for a closed 
system involving only PV work are derived using eqs 
1-3 and 1-4: 

dA =-SdT-PdV (1-7) 

dG = -SdT + VdP (1-8) 

The natural variables of A are T and V, and the 
natural variables of G are T and P. 

Equations 1-6 through 1-8 make it possible to derive 
the following criteria of spontaneous change: (dH)sj> 
< 0, (dA)7\v < 0, and (dG)Tj> < 0, of which the last 
two are useful and the last one is especially useful 
since so many equilibrium measurements are made 
at constant T and P. 

Equation 1-8 indicates that if we can determine G 
of a closed system involving only PV work as a 
function of T and P, we can calculate all of the 
thermodynamic properties of the system because 

S = -OG/aDp (1-9) 

V=(dGldP)T (MO) 

The enthalpy H can be calculated by use of the 
Legendre transform H = G + TS (this is the differ
ence between eqs 1-2 and 1-4) or by its equivalent, 
the Gibbs—Helmholtz equation: 

H = -T*[d(G/T)/dT]P (1-11) 

If G is only known as an explicit function of T and V 
or of P and V, all of the thermodynamic properties of 
the system cannot be calculated. There is a very 
important lesson here. If a thermodynamic potential 
can be determined as a function of its natural 
variables, all of the thermodynamic properties of the 
system can be calculated; but if some of the indepen
dent variables are not natural variables, they cannot. 



Legendre Transforms in Chemical Thermodynamics 

The state of a system can be defined in terms of any 
sufficient set of independent variables, but the reason 
for specifying the natural variables is that all of the 
thermodynamic properties of the system can be 
obtained by determining the thermodynamic poten
tial as a function of its natural variables. Another 
way to say this is that when certain independent 
variables can be controlled, the thermodynamic po
tential for which they are the natural variables 
should be calculated from the experimental data. 

A closed system involving only PV work has four 
thermodynamic potentials (U, H, A, G) because U 
depends on the two conjugate pairs of independent 
variables (T, S) and (P, V), and there are four possible 
combinations of independent variables when one is 
taken from each pair. The fact that the natural 
variables of the internal energy are the two extensive 
properties S and V is represented by U(S,V). The 
natural variables of the enthalpy are one extensive 
variable and one intensive variable, which is repre
sented by H(SJ3). The natural variables of the 
Helmholtz energy are one intensive and one exten
sive variable, which is represented by A(T,V). The 
natural variables of the Gibbs energy are two inten
sive variables, which is represented by G(TJ3). Thus, 
the Legendre transforms of U given in eqs 1-2 to 1-4 
replace extensive natural variables with intensive 
natural variables. In general, intensive variables are 
easier to control in the laboratory than extensive 
variables. The reason for introducing the additional 
thermodynamic potentials H, A, and G is the con
venience of having the intensive variables T and P 
as natural variables. 

When a system involves work in addition to PV 
work, there is an opportunity to make further Leg
endre transforms, and this article is about how and 
why this is done. For open systems and systems 
involving work in addition to PV work, the funda
mental equation of thermodynamics for the internal 
energy may include additional work terms. For 
example, if chemical work, gravitational work, work 
of electrical transport, work of elongation, surface 
work, work of electric polarization, and work of 
magnetic polarization are involved and are indepen
dent, the fundamental equation for the internal 
energy can be written as 

N 
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, i • 

dU = T dS - P dV + ^Ji1 dnt + xp dm + 

N 

2 > i dQ( + fdL + y dAs + Edp + Bdm (1-12) 

This equation applies to a multiphase system and is 
really more complex than it appears. Equation 1-12 
does not apply to any actual system, but it is a good 
place to start to discuss the general nature of the 
terms that are discussed in more detail in the 
following sections. When a system has more than 
one phase, each species contributes a chemical work 
term for each phase in which it is present. The 
chemical potential of species i is represented by /a if 
the non-Py work terms are independent of the 
amount rn of species i in a phase; later we will add a 
prime when other work terms involve rn. When there 

Figure 1. Work on a liquid film performed by a force /"on 
a sliding bar. 

is a single phase, N is the number of species in the 
system, but N can be as large as the number of 
species times the number of phases. In the gravita
tional work term, xp is the gravitational potential and 
m is mass. The electrical work term is like the 
chemical work term in that each species contributes 
a term for each phase in which it is present; the 
electric work term depends on the charge Qi that 
species i contributes to the electric charge of the 
phase and the electric potential 4>i of the phase. The 
mechanical work term can be much more complicated 
because a solid can be distorted in various ways. In 
general this term requires tensors, but the work term 
shown here deals with the force of extension f and 
the change in length L of the sample in the direction 
of the force. The surface work term also depends on 
the geometry of the system; y is surface tension or 
interfacial tension and AB is surface area. The last 
two terms deal with the work of polarization. E is 
electric field strength, p is the dipole moment of the 
system, B is magnetic field strength (magnetic flux 
density), and m is the magnetic moment of the 
system. The dots indicate scalar products of vectors. 
The chemical terms are sometimes written as a scalar 
product, but, as we will see in eqs 111-38,111-39, and 
111-40, it is better to write the chemical terms as a 
matrix product. Equation 1-12 indicates that the 
work terms are independent, but some of the terms 
may not be independent and must be combined with 
other terms, as described below. 

It is perhaps puzzling that there are three types 
of work terms. The terms P dV, f dL, and y dAs all 
amount to force time distance. Figure 1 illustrates 
this for work done on a liquid film against surface 
tension. The work performed by the force f on the 
sliding bar is IyI dx — Iy dAa, where y is the surface 
tension, I is the length of the interface, dx is the 
distance in the direction of the force, and dAs = 1 dx. 
The 2 comes from the fact that the liquid film has 
two surfaces. The terms fit dra, xp dm, and 4>i dQt are 
of a different type; they are of the form (potential) 
d(capacity factor). The terms E'dp and B'dm are of 
the form (field>d(polarization). Feynman2 gives a 
detailed explanation of these three types of work 
terms and writes the potential energy U of an object 
in a field C at a point where the potential is xp as 

U = -fF-ds = -m/C-ds = mxp (1-13) 

where F is a force, s is a distance vector, and m is 
the energy divided by a potential xp. In using these 
work terms, we will assume that work is performed 
in a quasi-static process in which the system is at 
equilibrium at each infinitesimal step, so that exact 
differentials can be used. 
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It does not seem possible to imagine a system in 
which all these kinds of work terms are independent, 
but eq 1-12 reminds us that several types of work may 
be involved in a single thermodynamic system. It is 
important to notice that the work terms in the 
fundamental equation for U are all of the form 
(intensive variable) d(extensive variable). The natu
ral variables for U for the hypothetical system 
described by eq 1-12 are indicated by U(S, V, m, m, 
Qi, L, As, p, m), where rn represents the amounts of 
all of the species in the system. When eq 1-12 is 
written for an actual system, it is important that 
these extensive variables be independent of each 
other. When some of them are not independent, 
dependent variables must be eliminated from the 
fundamental equation; for example, the charge Qj 
contributed by species i to a phase may be expressed 
in terms of the amount rn of species i in the phase. 

Temperature and pressure can be introduced as 
natural variables by use of eqs 1-2,1-3, and 1-4. The 
intensive variables like the chemical potential of a 
species /Ui, the gravitational potential tp, the electric 
potential 4>i of a phase, the force of extension f, the 
surface tension y, the electric field strength E, and 
the magnetic field strength B can be introduced as 
natural variables only by defining new thermody
namic potentials by use of further Legendre trans
forms. 

Since the natural variables for U are all extensive, 
eq 1-12 can be integrated while holding all of the 
intensive variables constant. This yields 

TV N 

U = TS- PV+Znto + H>m + Jj1Q1+fL + 
8=1 ! = 1 

yAs + Ep+Bm (1-14) 

Alternatively, this equation can be derived by use of 
Euler's theorem. A function f(x\^2,---rCti) is said to 
be homogeneous of degree n if 

I(KX^tIX2,...,/WC^y) R [yXi^C2f'r%N' l l ' l o ) 

For such a function, Euler's theorem states that 

£ 3f 
UfIx1JC2,---^

 = 2^xi— d-16) 
;=i dxt 

Thermodynamic potentials like U, H, A, and G are 
homogeneous of degree 1 in terms of extensive 
thermodynamic properties, and so eq 1-12 leads to 
eq 1-14. The absolute value of the internal energy of 
a system is unknown, but eq 1-14 can be used in 
thermodynamic derivations because actual measure
ments and calculations are concerned with changes 
from one equilibrium state to another equilibrium 
state. 

It is important to note that the intensive variables 
(T, P, [it, ip, 4>i, f, y, E, and JS) for the system described 
by eq 1-12 are each partial derivatives of the internal 
energy when the other variables are held constant. 
For example, 

H1 = OU/dn^y^Q.^j,^ (1-17) 

where n, ̂  m. This equation is written on the 

assumption that the various extensive variables are 
independent, but they may not be independent for 
an actual system. Note that only the natural vari
ables for U for the system are included in the 
subscripts. Thus, if the internal energy were known 
as an explicit function of its natural variables, the 
corresponding intensive properties of the system 
could be calculated by partial differentiation of this 
function. From the standpoint of the fundamental 
equation for U, the symbols T, P, fiu V> 0«> /"» y> ^> 
and J3 are simply symbols for partial derivatives. 

The fundamental equations for H, A, and G for a 
system involving the various kinds of work described 
above can be obtained by using the Legendre trans
forms 1-2 to 1-4. For example, 

N 

dG =-SdT+ VdP + JHI d"i + ^P dm + 
i=l 

N 

JcP1 dQt + fdL + ydAs + Edp + Bdm (1-18) 
i = i 

Thus the natural variables of G for this hypothetical 
system are indicated by G(T, P, rii, m, Q1, L, As, p, 
m). Again we observe that the coefficients of the 
differential terms can be obtained as derivatives of 
G with respect to T, P, m, m, Qi, L, A8, p, and m, 
when the natural variables other than the one varied 
are held constant. 

When the intensive variables are held constant, eq 
18 can be integrated to 

N N 

G = JnJX1 + tpm + JcP1Q1+ fL + yAs + 
i = i i = i 

Ep+Bm (1-19) 

Note that when P and T are introduced as natural 
variables, their terms in the expression for the 
integrated thermodynamic potential are eliminated; 
thus, eq 1-19 has two fewer terms than eq 1-14. This 
reduction will continue as further intensive variables 
are introduced as natural variables because the 
integration of a fundamental equation is always 
carried out with the intensive natural variables held 
constant. 

Equations 1-12 and 1-18 and the corresponding 
equations for H and A are useful for the definitions 
(see eq 1-17) they give for the coefficients of the 
differentials, and they provide useful Maxwell equa
tions. However, in a given experimental situation, 
it may be much more convenient to control one or 
more of the intensive variables fiu V> 4>i> /> Y> E, and 
JS. Therefore, Legendre transforms are used to define 
additional thermodynamic potentials that have some 
of these intensive variables as natural variables. This 
is simply a continuation of the process started with 
eqs 1-2 to 1-4. A number of these additional thermo
dynamic potentials are described in sections III-IX. 
It is evident that there is a very large number of 
thermodynamic potentials that can be defined by 
Legendre transforms; actually the number is infinite 
because the chemical potential of any species or 
combination of chemical potentials of species can be 
chosen as natural variables. This raises a serious 
nomenclature problem. There is a solution in prin-
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ciple to this problem that is discussed in the next 
section; however, more discussion is needed on the 
nomenclature for thermodynamic potentials. 

The Legendre transforms in eqs 1-2 to 1-4 and in 
sections III-DC can be referred to as partial Legendre 
transforms. The complete Legendre transform of U 
replaces all of the extensive natural variables with 
intensive natural variables. The complete Legendre 
transform of the internal energy is 

JV N 

U' = U-TS+PV-^nifii -rpm- ^iQi " 
i = l i=l 

fL - yAs - Ep - Bm = 0 (1-20) 

where U' is a transformed internal energy, which is 
equal to zero (see eq 1-14). Taking the differential 
of U' and inserting eq 1-12 for dU yields 

N N 

-S dT + V dP - 5 X d ^ - m dV - XQ, d0, -
i=\ i=\ 

Ldf-Asdy- p-dE - m-dB = 0 (1-21) 

This is the Gibbs-Duhem equation for the system. 
It shows that at equilibrium there is a relation 
between the intensive variables for a system. This 
particular system involves N + 8 intensive variables, 
and so only N + 7 of them are independent. This is 
of course true only if the extensive variables are 
independent. If there are two phases at equilibrium, 
there are only N + 6 independent intensive variables 
because there is an additional Gibbs—Duhem equa
tion to be satisfied for the second phase. Therefore, 
the number F of intensive degrees of freedom for this 
system with p phases is F = N - p + 8, where 8 is 
the number of conjugate pairs in addition to the 
chemical work terms. This is the extended Gibbs 
phase rule. For the one-phase system, F = N + 7. 
Since F is the number of intensive degrees of freedom 
required to describe the intensive state of the system, 
one extensive variable has to be added to describe 
the extensive state of the system. 

Equations 1-12 to 1-21 apply when there are no 
chemical reactions, but when chemical reactions are 
at equilibrium, eqs 1-12 to 1-21 must be written in 
terms of components. At chemical equilibrium it is 
necessary to use components rather than species 
because only the components are independent. If 
reactions occur and the system is at chemical equi
librium, the amounts of N species are not indepen
dent variables because their equilibrium chemical 
potentials are related through Xv^ — 0, where v; is 
the stoichiometric number for species i, for each 
independent reaction. If there are R independent 
reactions, there are N-R independent species or 
combinations of species, which are referred to as 
components. Thus the number of independent chemi
cal work terms is C = N - R, where C is the number 
of components. The number of components is defined 
as the number of species (or combinations of species) 
required to describe the composition of the reaction 
system at chemical equilibrium. The determination 
of the number of components and the selection of a 
suitable set of components really requires the use of 
matrices (see section III.A.2). If the first C species 

in a system can be selected as a set of components, 
the summation of chemical terms in eqs 1-12, 1-14, 
1-18, 1-19, 1-20, and 1-21 has to be replaced with 

c 
JJ^1 dnCi (1-22) 
i = l 

where fit is the chemical potential of a species selected 
as a component and na is the amount of the compo
nent with that chemical potential. If charge balance 
is independent of the atom balances, the number of 
components is C = N-R-I. The Gibbs-Duhem 
equation for a system with chemical reactions at 
equilibrium is 

c c 
-S dT + VdP- X^c , fy ~ m dip - ^Q1 <ty -

i=i i=i 

L df - As dy - p-dE - m-dB = 0 (1-23) 

This system involves C + 8 intensive variables, and 
so only C + 7 of them are independent. The number 
F of intensive degrees of freedom for this system with 
p phases is F = C - p + 8. For the one-phase system, 
the phase rule would be F = C + 7 if the work terms 
were independent. The use of matrices to determine 
the number of components in a system is discussed 
in section III.B. The choice of components is to some 
extent arbitrary, but the number of components is 
unique. For example, in a system consisting of CO, 
CO2, H2, H2O, and CH4, the components can be taken 
to be C, O, and H or CO, CO2, and H2. 

Equations for differentials of thermodynamic po
tentials, like those above, lead to a large number of 
Maxwell equations. If there are n terms, there are 
2" thermodynamic potentials and n(n - l)/2 Maxwell 
relations. There are three types of Maxwell equa
tions; both partial derivatives may be with respect 
to an extensive variable, one of the partial derivatives 
may be with respect to an extensive variable and the 
other with respect to an intensive variable, or both 
partial derivatives may be with respect to intensive 
variables. The latter type is generally more useful 
because it is usually easier to control intensive 
variables in the laboratory. In order to obtain this 
type of Maxwell equation, it is necessary to use 
Legendre transforms. 

No references have been given above to Legendre 
transforms because the treatment hardly goes beyond 
that of textbooks. All of the concepts described above 
go back to Gibbs.1 The uses of Legendre transforms 
are discussed by Callen;3'10 Tisza;4 McQuarrie;5 Be-
attie and Oppenheim;6 Van Ness and Abbott;7 Modell 
and Reid;8 Adkins;9 Chandler;11 Couture, Chahine, 
and Zitoun;12 and Bertin, Faroux, and Renault.13 

//. Callen's Nomenclature for Legendre 
Transformed Thermodynamic Potentials 

The purpose of this section is to introduce the 
infinite number of thermodynamic potentials that can 
be defined by Legendre transforms and to describe a 
nomenclature that can be used to designate any 
possible thermodynamic potential. It is not neces
sary to understand this section in detail in order to 
be able to use Legendre transforms, but it is impor-
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tant to see that it is possible to give systematic 
symbols for an infinite number of thermodynamic 
potentials and an infinite number of fundamental 
equations. 

Callen310 uses the nomenclature U(XoJCi,...,Xi) that 
we have used above to indicate that the internal 
energy has the natural extensive variables X0 to Xt. 
The corresponding intensive variables are repre
sented by Pk so that the fundamental equation for U 
(cf., eq 1-12) is represented by 

AU=j^PkAXk ( I M ) 

Callen uses Po to represent T and Xo to represent S. 
Chemical work terms can be treated like the other 
work terms; for example, P7 = /Hj and X7 = rij. The 
extensive variables Xi must be independent. The 
intensive variables Pk can be calculated from the 
equation for the internal energy U as a function of 
Xo, ..., Xt by use of the partial derivatives 

Pk = dU/dXk (II-2) 

where all of the extensive variables other than Xk 
have to be held constant for the differentiation. The 
integrated form of eq II-l (cf., eq 1-14) is 

U=J^PkXk (II-3) 
k=0 

Callen uses the symbol U[Pt] to represent the 
transformed internal energy that has Pj as a natural 
variable. This is accomplished by defining U[PH with 
the Legendre transform 

U[P1] =U-PXt (II-4) 

The symbol U[Pi] for the new thermodynamic poten
tial is used to indicate that Pt has been introduced 
as a natural intensive variable by subtracting the 
term PjX; from U to define the new thermodynamic 
potential. It is important to note the use of square 
brackets in this notation. The new thermodynamic 
potential U[Pi] has the natural variables indicated 
by U[Pi](X0Xh...Xi-lJ>iXi+1,...Xt); note that the ex
tensive variable Xi has been replaced by the intensive 
variable Pj. Callen's symbols for the basic thermo
dynamic potentials are H = U[P], A = U[T], and G 
= U[TJ3I 

Additional thermodynamic potentials can be de
fined by use of the Legendre transform 

[7[P0,P1;...,Ps] = i 7 - t p A CII-5) 
k=0 

The symbol for the new thermodynamic potential 
U[PoPi,..-Ps] shows the intensive natural variables 
introduced by the Legendre transform. This trans
form replaces the natural extensive variables Xo, Xi, 
..., Xs of U with the intensive natural variables Po, 
Pi , ..., P8 of U[P0J

3U-J3Sl IfPo is T, X0 is S, P1 is P, 
and Xi is V, then U[P0J

3J = U[TJ3] = G. The partial 
derivatives of the new thermodynamic potential are 

= -Xk k = 0, 1, ..., s (II-6) 

^ - J L = Pk k=s + l,...,t (II-7) 

The fundamental equation for the new thermody
namic potential is 

dU[P0...Ps] = 1 ( - ^ ) dPk + X Pk AXk (H-8) 
k=0 k=s+l 

The integration of this fundamental equation at 
constant values of the intensive variables Po to P s 

yields the following equation for the new thermody
namic potential: 

U[P0-P11]= I PkXk (H-9) 
k=s+l 

The fundamental equations are written in terms 
of differentials of natural variables because the state 
of a system is described completely only by a ther
modynamic potential written as a function of its 
natural variables. The new thermodynamic potential 
has the natural variables Po, ..., Ps , Xs+i, ..., Xt. 

U[P0,...,PS] = U[P0,..fsl(P0,..,PsXs+1,-Xt) 
(IMO) 

The following are some examples of Callen's no
menclature for the usual thermodynamic potentials 
H and G for a one-phase system and their counter
parts when other kinds of work are involved: 

Closed system with only PV work: H(S,P) = U[P], 
G(TJ3) = U[TJ3]. 

Open system with only PV work: H(S P,m) = U[P], 
G(TJ3Vi) = U[TJ3I 

Open system with PV and <pQ work: H(SP,rii,Qi) 
= U[Pl G(TJ3^Qi) = U[TPl 

Open system with PV and <pQ work at specified <&: 
H(Sp1TIiA) = U[PA] = H[<t>i], G'(TP,m,4>i) = U[TPAi] 
= G[<l>i]. Note that the convention followed here is 
that H and G are used in writing the fundamental 
equation when other kinds of work are involved and 
are written in the form Pk dXk, tha t is in the form 
(intensive property) d(extensive property). A prime 
is used to indicate that a Legendre transform has 
been used to make an intensive property other than 
T and P a natural variable. Callen's nomenclature 
can be extended by using H, A, and G with square 
brackets, in addition to U. If the definitions of H, A, 
and G in eqs 1-2 to 1-4 are adhered to, we can use U', 
H, A', and G' for Legendre transformed thermody
namic potentials and indicate the intensive variables 
introduced in addition to T and P by square brackets. 
The use of H' = H[<t>i] and G' = G[Cp1] is a logical 
extension of Callen's system, which uses U[P A] and 
U[TPAi], respectively. 

In this section we have seen that even though there 
is an infinite number of thermodynamic potentials, 
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each can be represented by a distinctive symbol that 
tells how it is defined. 

///. Transforms for Chemical Work 

A. Gas Reactions 

1. Derivations 

Chemical reaction systems are generally consid
ered thermodynamically as batch processes under 
specified conditions of T and P or T and V, and the 
chemical potential of a reactant has not often been 
considered as an independent variable. The idea of 
using the chemical potential of a species as an 
independent variable is more familiar in statistical 
mechanics, where a semigrand isothermal-isobaric 
ensemble is one in which a species is available from 
a reservoir through a semipermeable membrane at 
a specified chemical potential. Semigrand ensembles 
have been used in statistical mechanical theories of 
solutions,14 the study of the relationship between 
light scattering and composition fluctuations,15 con
stant pressure solution theory,16-19 studying molecu
lar changes in hemoglobin,20,21 cooperativity theory 
in biochemistry,22 linear aggregation theory in cell 
biology,23 solubility in monolayers,24 and calculating 
the equilibrium distribution of hydrocarbons in ho
mologous series.25 Also, there have been equilibrium 
calculations on hydrocarbon processing at a specified 
partial pressure of molecular hydrogen.26,27 This type 
of equilibrium calculation can be extended to reac-
tants that are not elements.28,29 For example, equi
librium compositions within a whole homologous 
series can be calculated at a specified partial pressure 
of ethylene.30,31 

Alberty and Oppenheim32 used a Legendre trans
form involving the chemical potential of gaseous 
ethylene to define a transformed Gibbs energy that 
is minimized at equilibrium in the alkylation of 
benzene. They33 went on to derive the semigrand 
partition function for this system. Later, they34,35,36 

gave the seven Legendre transforms that apply to 
this system and wrote out the eight forms of the 
fundamental equation. They showed that for making 
calculations, it is more practical to use the partial 
pressure of a reactant as a natural variable, rather 
than its chemical potential. This brings in a trans
formed entropy S' and a transformed enthalpy H', 
as well as the transformed Gibbs energy G'. Al
berty37 used a Legendre transform involving the 
chemical potentials of acetylene and molecular hy
drogen to discuss the equilibrium polymerization of 
polycyclic aromatic hydrocarbons in flames. 

When chemical reactions occur in a reaction cham
ber that is connected with a large reservoir of one of 
the reactants through a semipermeable membrane, 
the Gibbs energy G of the contents of the reaction 
chamber is not minimized at equilibrium and the 
atoms of the elements in the reactant in the reservoir 
are not conserved in the reaction chamber. However, 
the atoms of the elements that are not in the 
reactants in the reservoir are conserved, and it can 
be shown that the transformed Gibbs energy defined 
below is minimized. 

The derivation34 of the fundamental equation for 
the transformed Gibbs energy of a gaseous reaction 

P 

7777/777/ 

Reaction 
Vesse I 
A, B, C 

Semipermeable 
Membrane 

/ 

/ 
Reservoir 

of B 

Figure 2. The reaction vessel contains gaseous species A, 
B, and C at T and P connected to a reservoir of B at PB 
through a semipermeable membrane permeable only to B. 
The heat reservoir is not shown. 

system is most easily illustrated by considering the 
reaction 

A + B = C (IH-I) 

The fundamental equation for G is 

dG = -SdT + VdP + /uA dnA + /tB dnB + nc dnc 

(HI-2) 

If the reaction does not occur, five variables have to 
be specified to describe the extensive state of the 
system; this is in agreement with the phase rule that 
the number of degrees of freedom is given by 

F = C-p+ 2 (III-3) 

where C is the number of components and p is the 
number of phases. For the nonreacting system 
described by eq III-2, F = 3 - l + 2 = 4 intensive 
variables are required to describe the intensive state 
of the system. To describe the extensive state of the 
system, it is necessary to include one extensive 
variable. However, if reaction III-l is at equilibrium, 
the number of components isC = N-R = 3-l = 
2 where R is the number of independent reactions, 
and F = 2 — 1 + 2 = 3 intensive variables are 
required. To describe the extensive state of the 
system, it is necessary to include one extensive 
variable. At chemical equilibrium the extensive state 
of the system could be described by specifying T, P, 
nc°/n\°, and ^A0. There is another way to look at this 
system that is illustrated in Figure 2. The reaction 
system is connected to a reservoir of species B 
through a semipermeable membrane that is only 
permeable to B. Now PB is an independent variable 
like T and P. The extensive state of the system can 
be described by specifying T, P, PB, and nA°. 

When the reaction system is at equilibrium, it is 
necessary to write the fundamental equation in terms 
of components, rather than species. This can be done 
by use of the equilibrium condition 

MA + MB = Mc (III-4) 

to eliminate /uc from eq III-2 to obtain 

d G = - S d T +VdP + 
[iA(dnA + dnc) + /iB(dnB + dnc) = 

-SdT+ VdP + fi{dn{ + fiB dnB (III-5) 

where JX{ = fiA is the transformed chemical potential 
of the pseudoisomer group; at specified [IB, A and C 
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are called pseudoisomers. Note that eq III-5 is in 
terms of amounts of two components rather than 
three species. The amount of the pseudoisomer group 
is 

so that 

n{ = nA + nc 

dn{ = d7iA + dnc 

(III-6) 

(III-7) 

The total amount (bound and free) of B in the system 
is 

nB = nB + nc (III-8) 

so that 

dnB = dnB + d n c (III-9) 

At chemical equilibrium, 

(dG/dn{)TtPnB, = ix{ = n A (III-10) 

(dG/dnB')T^n{ = MB (HI-U) 

This is an example of the theorems of Beattie and 
Oppenheim6 tha t "(1) the chemical potential of a 
component of a phase is independent of the choice of 
components and (2) the chemical potential of a 
constituent of a phase when considered to be a 
species is equal to its chemical potential when 
considered to be a component". 

Now we use the Legendre transform 

G' = G — nB'/xB (111-12) 

to make ^B a natural variable for the transformed 
Gibbs energy G'. A possible alternative symbol for 
the transformed Gibbs energy, which is close to 
Callen's symbol U[T,P,fiBl is G[fiBl Taking the 
differential of G' and substituting eq III-5 yields 

dG' =-SdT+VdP- nB dfih + /x{ dn{ (111-13) 

Thus at a specified T, P, and fiB, the system behaves 
like a one-component system; the pseudoisomer 
group I is that component. At chemical equilibrium, 

(dG/dn{)TtP=/*{ =/iA •fis 
(111-14) 

The above treatment is completely general, but 
now we assume that the gases are ideal so that 

/I1 = [i° + RT In(PJP0) (111-15) 

where P° is the standard-state pressure. In order to 
use P B as an independent variable in the fundamen
tal equation, djuB in eq 111-15 is replaced with the 
expression for the total differential: 

d/iB = (dfiB/dT)pB dT + (dptB/dPB)T dPB (111-16) 

When the derivatives of/IB are taken and eq 111-16 
is substituted in eq 111-13, we obtain 

dG' = -S' dT + VdP' - (ncRT/PB) dP B + /u{ dn{ 
(III-17) 

where the transformed entropy of the system is 

S' = S - nB'SB (111-18) 

The partial molar entropy of B is represented by 
SB. The partial pressure P' of the pseudoisomer 
group is given by 

P' = PA + PC=P (111-19) 

We can use a further Legendre transform to define 
the transformed enthalpy H'. 

H' = G' + TS' (111-20) 

Equations 111-12, 111-18, and 111-20 indicate that 

H' = H-nB'HB (111-21) 

Taking the differential of eq 111-20 and substituting 
eq III-17 yields 

dH' = TdS'+ VdP'- (ncRT/PB) dPB + /V dn{ 

(111-22) 

The pseudoisomer group contributes a single term 
to CdGOr1P

1^1B, but now we must consider how this term 
is to be calculated given the thermodynamic proper
ties of A, B, and C. This term can be written in 
several different ways: 

(dG')Tj»P = fi{ dn{ = fiA(dnA + dnc) = fiA dnA + 

("c ~ AB) a n c = ^ A ' ^nA + Ac ^ n c (HI-23) 

Thus we see that the contributions of A and C to G' 
are proportional to the transformed chemical poten
tials /UA = I«A and ^c — Mc ~~ MB- When this equation 
is written in terms of the transformed chemical 
potentials of A and C there are two terms, but the 
transformed chemical potential of the pseudoisomer 
group can be written as 

Ai' = Ai'° + RT In 
nT F 

LK 4- nc)P°\ 
(111-24) 

Thus the question is "How is /ui° related to /UA'° anc* 
,M0'

0?" The following derivation is given by Smith and 
Missen38 for the closely related problem of represent
ing the standard chemical potential of an isomer 
group at equilibrium in terms of the standard chemi
cal potentials of the individual isomers. The trans
formed chemical potentials of A and C are given by 

A A ' = MA'° +RTIn 
nA \P' 

Ac — Ac + RTIn 

nA + ncJP° 

nA + nc!pc 

(111-25) 

CIII-26) 

Equations 111-24, 111-25, and 111-26 can be written 
in terms of amounts as follows: 

U1 

nA + nc 

P'/P° exp 
Ai " A l ' 

RT 
(111-27) 
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n . = 
nA + nc 

P'/p° e x P 

nA + nc 

P'/P° e x ^ 

W - ^ A ' 0 ! 

I RT \ 

L RT . 

(111-28) 

(111-29) 

Substituting these three equations in n\ — nA + nc 
(eq III-6) yields 

H{° = -i?Tln[exp(- /aA '7i?T) + exp(-/xc'°/RT)] 
(111-30) 

where fiA° — fiA° and fic'° — ^c0 — ^B- Of course, 
standard Gibbs energies of formation would be used 
in actual calculations, rather than standard chemical 
potentials. This important equation is reminiscent 
of statistical mechanics in that the term in brackets 
is a partition function, and taking derivatives yields 
the other standard thermodynamic properties of the 
isomer group. The equilibrium mole fraction of A 
within the pseudoisomer group is given by 

rA = exptCa/0 - nA°)IRT\ (111-31) 

This is the Boltzmann distribution for this system. 
There is, of course, a similar equation for C. It can 
be shown39 that the standard transformed enthalpy 
for the pseudoisomer group is given by 

AfJT0Q) = rAAfff'°(A) + rcAffnC) (111-32) 

where rA and re are the equilibrium mole fractions 
of A and C within the isomer group and Afff'°(A) = 
A1H

0CA) and A{H'°(C) = Aftf°(C) - Afff°(B). 
Equation III-17 can be generalized to apply to a 

system with N' reactants (pseudoisomer groups) by 
writing it as follows: 

constant. These questions can best be answered by 
use of matrices. 

Since atoms of elements are conserved in chemical 
reactions, a reaction system has38,40'41 a conservation 
matrix A and a stoichiometric number matrix v. 
These ways of representing the conservation of atoms 
of elements are equivalent, but one or the other may 
be more convenient in a given case. The A matrix is 
made up of the numbers of atoms of the elements in 
the various species and the coefficients of the amounts 
of species in any additional conservation equations. 
Redundant rows must be eliminated, and the number 
of independent rows is equal to the number of 
components C; thus, C is equal to the rank of the A 
matrix, and so the A matrix is C x N, where N is 
the number of species. The v matrix is made up of 
the stoichiometric numbers, arranged in columns, in 
a set of independent chemical equations for the 
system. The number R of independent reactions is 
equal to the rank of the v matrix, and so it is N x R. 
These matrices are related through 

Av = 0 or vTAT = 0 (111-36) 

dG' =-SdT+ VdP'- (nBhRT/PB) dPB + 
N' 

JjI1' dn/ (111-33) 

where the superscript T indicates the transpose. The 
number N of species in the system is given by 

N = C+ R = rank A + rank v (111-37) 

The stoichiometric number matrix v is the null space 
of the A matrix, and AT is the null space of the vT 

matrix. Therefore, one can be calculated from the 
other by use of a computer program, like Math
ematical2 that does matrix operations. 

Equations 111-36 and 111-37 can be illustrated by 
considering a gaseous reaction system containing CO, 
CO2, H2, H2O, and CH4. The conservation matrix is 

C 

A = O 
H 

CO CO2 

r 1 1 

1 2 

[ 0 0 

H2 

O 

O 
2 

H2O 

O 
1 

2 

CH4 

1 

O 
4 

Here, P" is the sum of the partial pressures of species 
other than B. In this case the transformed entropy 
of the system is given by 

S' = S -(nB + nBh)SB (111-34) Making a Gaussian reduction yields 

where nsb is the total amount of B bound in the 
system, and 

(111-38) 

JV 

"Bb = X w (111-35) 
i = l 

CO 
A = CO2 

H2 

CO CO2 

r 1 O 
O 1 

Lo 0 

H2 

O 
O 

1 

H2O CH4 

- 1 2 
1 - 1 

1 2 
where JVj is the average number of B molecules in 
pseudospecies i. 

2. Matrix Notation and Degrees of Freedom 

The general case described by fundamental eq III-
33 brings up difficult questions like "What is N' for 
a specific system and how many components and how 
many independent reactions are there?" The same 
type of question has to be answered for systems 
where the partial pressure of a species is not held 

(111-39) 

Since no row is redundant, the rank of this matrix is 
C = 3, and these components can be taken as C, O, 
and H or CO, CO2, and H2. Actually there is an 
infinite number of choices of components because the 
conservation matrix can be multiplied by any 3 x 3 
matrix without affecting its suitability as a conserva
tion matrix. The last two columns indicate that H2O 
and CH4 are made up of CO, CO2, and H2. The null 
space of A is the stoichiometric number matrix v. 
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CO 
CO2 

H2 

H2O 

CH. 

1 - 2 

- 1 1 

- 1 - 2 

1 O 

O 1 

(111-40) 

This indicates that the chemical equations are 

CO + H2O = CO2 + H2 (111-41) 

CO2 + CH4 = CO + 2H2 (111-42) 

These equations are not unique. 
It is convenient to write chemical work terms with 

matrix notation, and this can be done in terms of 
amounts of species or extents of reaction.32'38 For the 
Gibbs energy in a one-phase system where only PV 
work is involved, the fundamental equation can be 
written in matrix notation as follows: 

dG = - S dT + V aP + ft dn (111-43) 

dG = -S dT + V dP + fiv d£ (111-44) 

where fi is the IxN chemical potential matrix, n is 
the NxI amount matrix, and | is the RxI extent 
of reaction matrix. It is known that the fundamental 
equation can be written in terms of components,6,43,44 

and this can be expressed in matrix notation as 
follows: 

dG = -S dT + V AP + p<A dn (111-45) 

where fic is the I x C chemical potential matrix for 
the C components. The chemical potentials of the 
components follow the rules of Beattie and Oppen-
heim6 that is mentioned in connection with eq Hi
l l . 

When the partial pressure of reactant B is speci
fied, the conservation matrix A is converted to the 
apparent conservation matrix A' by deleting the row 
and column for B and deleting redundant columns.37 

The v matrix is correspondingly changed to the V 
matrix. The number C" of apparent components is 
equal to the rank of the A' matrix, and the number 
R' of apparent independent reactions is equal to the 
rank of the V matrix. These matrices are related 
through 

AV = O or (v')T(A') = O (111-46) 

The number N' of pseudospecies (reactants that are 
sums of species) in the system is given by 

N' = C + R' = rank A' + rank v' (111-47) 

It is convenient to be able to write the fundamental 
equation for the transformed Gibbs energy in matrix 
form.44 When the partial pressure of species B is 
specified, the fundamental equation of thermody
namics for the transformed Gibbs energy (see eq III-
33) can be written in matrix form as 

dG' = S ' dT + VdP'- (nBhRT/PB) dPB + ft' dn' 
(111-48) 

The apparent chemical potential matrix//' is 1 x TV', 

and the apparent amount matrix n' is N' x 1. 
Equation 111-43 can be written in terms of the 
apparent extent of reaction matrix £', which is Jf?' x 
1. 

dG' = -S' dT+VdP' - (nBhRT/PB) dPB + fiY d£' 
(111-49) 

This equation can also be written in terms of com
ponents as 

dG' = -S dT + V dP' - (nBhRTIPB) dPB + 
fi'cA'dn' (111-50) 

where C" is the apparent number of components. The 
Gibbs-Duhem equation at chemical equilibrium is 

O = -S' dT + V dP' - (dfic)nc (111-51) 

This equation indicates that at chemical equilibrium, 
there are C + 2 independent intensive variables. For 
a one-phase system there are C" + 1 independent 
variables, and for a two-phase system there are C" 
independent variables since there is an additional 
Gibbs—Duhem equation. Thus the number F' of 
apparent independent degrees of freedom at specified 
partial pressures of one or more species after the 
specification of PB is given by 

F=C-p+2 (111-52) 

where p is the number of phases, C is the apparent 
number of components after specifying the partial 
pressure of B, and F' is the number of intensive 
degrees of freedom after specifying the partial pres
sure of B. Note that F' does not count PB, but adding 
PB gives the number of degrees of freedom F = 3 = 
F' + 1. Note that C = C + 1, R = R', F = F' + 1, 
and N = N' + 1 in this case. 

Thus we have seen that the specification of the 
partial pressure of a species at equilibrium leads to 
a reconceptualization of the calculation of the equi
librium composition, new thermodynamic properties, 
new fundamental equations, a new Gibbs—Duhem 
equation, and a new phase rule, in short a whole new 
world of thermodynamics. When the partial pres
sures of one or more species are specified, attention 
is focused on reactants (sums of species) rather than 
species. The number of reactants (sum of species) 
N' may be considerably less than the number N of 
species. For example, a whole homologous series 
becomes a reactant when the partial pressure of 
ethylene is specified. The number R' of apparent 
independent reactions may be much smaller than the 
number R of independent reactions. The reason for 
using transformed thermodynamic properties is con
venience, the same reason that G is used to state the 
criterion for equilibrium at specified T and P, rather 
than using S. 

Symbols that do not involve G, S, and H could be 
used rather than G', S', and H'. The symbols G', S', 
and H' have the advantage that these transformed 
properties behave in a similar way to the thermody
namic properties G, S, and H. In fact, G', S', and H' 
for pseudospecies (sums of species) can be calculated 



Legendre Transforms in Chemical Thermodynamics Chemical Reviews, 1994, Vol. 94, No. 6 1467 

from G, S, and H for the species. It is necessary to 
specify what partial pressures are held constant. 

B. Biochemical Reactions 
The thermodynamics of many biochemical reac

tions is complicated by the fact that the reactants are 
often weak acids and may form complex ions with 
metal ions that are present and may be necessary 
for the catalytic action. At pH values and concentra
tions of free metal ions where a reactant exists as 
an equilibrium mixture of species containing different 
numbers of protons and metal ions, there is a 
complication that has to be dealt with, and so first 
we consider a reaction under conditions where this 
is not the case. When adenosine triphosphate (ATP) 
is hydrolyzed at high pH in the absence of Mg2+, the 
chemical equation is 

ATP4" + H2O = ADP3" + HPO4
2" + H+ (111-53) 

which represents the element balance for all of the 
elements and electric charge balance. 

The corresponding equilibrium constant expression 

K = 
[ADP][P1] 

[ATPJc0 (111-56) 

is 

K = 
[ADP3-][HPO4

2-][H+] 

[ATP4-](C0)2 
(111-54) 

where the brackets represent molar concentrations 
at equilibrium and c° is the standard state concen
tration (1 M). The (c0)2 in the denominator is 
required to make the equilibrium constant K dimen-
sionless. The activity coefficients of the ions depend 
on the electrolyte and are usually taken to be 
functions of the ionic strength I, as given by the 
extended Debye—Hiickel theory. In the laboratory, 
it is convenient to use an equilibrium constant if that 
depends on the ionic strength; thus K depends on the 
ionic strength as well as on T and P, and so the ionic 
strength must be specified. However, the ionic 
strength is a different kind of variable than T and P 
and does not appear directly in the fundamental 
equation; the ionic strength is like the specification 
that K is the equilibrium constant for the reaction 
in water, rather than methanol, for example. 

At lower pH values and in the presence of Mg2+, 
adenosine triphosphate exists as an equilibrium 
mixture of ATP4", HATP3-, H2ATP2-, MgATP2", 
MgHATP", and Mg2ATP. Analytical procedures for 
ATP yield the sum of these concentrations, which is 
represented by [ATP]. Similar remarks apply to ADP 
and inorganic phosphate Pi. 

Biochemists have known for some time that ap
parent equilibrium constants K' can be written for 
biochemical reactions in terms of sums of concentra
tions of species. For example, the hydrolysis of 
adenosine triphosphate to adenosine diphosphate and 
inorganic phosphate at specified pH and pMg is 
represented by the biochemical equation 

ATP + H2O ADP + R (111-55) 

The expression for the apparent equilibrium constant 
is 

where ATP, ADP, and Pj represent sums of species 
and c° is the standard state concentration. K' is 
referred to as the apparent equilibrium constant 
because it is a function of pH and the free concentra
tions of metal ions that are bound by the reactants, 
as well as T, P, and ionic strength. Here we will 
assume that pMg is specified. When the pH and pMg 
are treated as independent variables, we can imagine 
the experiment was carried out in a reaction chamber 
connected with a pH reservoir through a semiperme
able membrane that is permeable to hydrogen ions 
and a pMg reservoir through a semipermeable mem
brane that is permeable to magnesium ions. In this 
thought experiment, which is shown in Figure 3, 
hydrogen and magnesium are not conserved in the 
reaction chamber, and so a biochemical equation, like 
eq 111-55, should not indicate that hydrogen is bal
anced. Another consequence of this thought experi
ment is that the Gibbs energy G of the material in 
the reaction chamber is not minimized at equilibri
um. The same ideas apply to other metal ions that 
are bound by the reactants. 

The apparent equilibrium constant K' is a function 
of pH and pMg as well as T and P. The dependency 
of K' on pH and pMg can be calculated if the acid 
dissociation constants and magnesium complex dis
sociation constants are known. There has been 
international agreement45 on this nomenclature since 
1976. The prime on the equilibrium constant in eq 
111-56 has been used for some time, but K0^ and Kapp 
have also been used for this quantity. 

When a biochemical reaction is studied in the 
laboratory, there is no question about the fact that 
the Gibbs energy G is minimized at equilibrium. If 
the experiment is interpreted in terms of equilibrium 
constants in terms of species and conservation rela
tions in terms of species, the appropriate thermody
namic potential is G. This analysis can be made;46 

however, it requires detailed information on all of the 
equilibria in terms of species. On the other hand, 
when the analytical results at equilibrium are inter
preted by use of an apparent equilibrium constant 
expression like eq 111-56, it is not the actual experi
ment that is being analyzed, but the thought experi
ment in Figure 3. In this thought experiment, the 
Gibbs energy G of the system in the reaction chamber 
is not minimized at equilibrium because the concen
trations of H+ and Mg2+ are fixed. When the chemi
cal potentials of H+ and Mg2+ are specified at 
equilibrium as well as T and P, the thermodynamic 
potential that is minimized at equilibrium is the 
transformed Gibbs energy G' defined by the Legendre 
transform47'48-49 

G' = G- n'(H+)/*(H+) - 71'(Mg2+MMg2+) (111-57) 

where n'(H+) is the total amount of H+ in the system 
(free and bound). It is convenient to use the prime 
on G' to indicate that the equilibrium concentrations 
are specified for some species. A symbol for the 
transformed Gibbs energy that is an extension of 
Callen's recommendations is G[a(H+), /^(Mg2+)]. Equa-
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Figure 3. Reaction vessel for a biochemical reaction that 
is in contact with pH and pMg reservoirs through semi
permeable membranes, as well as heat and pressure 
reservoirs. 

tion 111-57 involves the total amounts /i'(H+) and 
n'(Mg2+) because at chemical equilibrium only com
ponents can be used as independent variables. The 
amount of the hydrogen component in the reaction 
chamber is given by 

N 

/1'(H+) = £iV;.(H
+)n; (111-58) 

where Ni(K+) is the number of hydrogen atoms in 
species i and rn is the amount of i. The amount of 
the magnesium component in the reaction chamber 
is given by 

N 

/1'(Mg2+) = X ^ ( M g 2 4 X (111-59) 
! = 1 

where M(Mg2+) is the number of magnesium atoms 
in species i. Substituting this and G = ~Lrnju.i into the 
Legendre transform yields 

G' = ^n1M1 - 2>,(H+)MH+)^ - X^(Mg2+) x 

MMg2+K 

= J/ijLMi - N1(H
+HU+) - N1(Mg2+HMg2+)] 

= JjiPi' ( I I I - 6 0 ) 

where the transformed chemical potential fit of 
species i is given by 

H{ = nt- N1(K
+)^(R+) - N1(Mg2+HMg2+) 

(111-61) 

Equation 111-60 shows that the transformed Gibbs 
energy G' of a thermodynamic system is equal to the 
sum of amounts of the various species each multiplied 
by its transformed chemical potential (x{, just like the 
Gibbs energy G is equal to the sum of amounts of 
the various species, each multiplied by its chemical 
potential fit. If the differential of G' in eq 111-57 is 
taken and the fundamental equation for G is substi
tuted, the following fundamental equation is obtained 
for G': 

dG' =-SdT+ VdP- n'(H) d/*(H+) -
N-2 

n'(Mg2+) d^(Mg2+) + J > / dnt (111-62) 
j= i 

Here N is the number of species. 
When the effect of temperature is to be studied, it 

is better to use pH = -log([H+]/c°) and pMg = -log-
([Mg2+Vc0) as independent variables, rather than /i-
(H+) and /1(Mg2+), and this change in variables (see 
eq 111-16) leads to 

dG' = - S ' dT + V dP + 2.303n'(H+)RT dpH + 
iV-2 

2.303/1'(Mg2+)AT dpMg + £ / * / dnt (111-63) 
j= i 

The transformed entropy S' of the system is defined 
by 

S' = S- /1'(H+)S(H+) - /1'(Mg2+)S(Mg2+) (111-64) 

Defining the transformed enthalpy with H' — G' + 
TS' yields 

H' = H- /i'(H+)tf (H+) - 71'(Mg2+)H(Mg2+) 
(111-65) 

Equation 111-63 is written in terms of species, but 
the terms for pseudoisomers can be collected together 
because pseudoisomers have the same transformed 
chemical potential at equilibrium. This yields 

dG' = -S' dT + V dP + 2.303n'(H+)i?T dpH + 
N' 

2.303n'(Mg2+)RT dpMg + ^ji{ dn/ (111-66) 
j= i 

where N' is the number of reactants (sums of species) 
in the system and n{ is the amount of reactant i (sum 
of species). This equation can be compared with eq 
111-33 above. Thus the natural variables for G' are 
T, P, pH, pMg, and n{. 

Equation 111-66 can be used to derive the expres
sion for K' at specified T, P, pH, and pMg. The 
standard transformed Gibbs energy of reaction can 
be calculated using 

\G'° = -RT In K' (111-67) 

If the standard transformed enthalpy of reaction is 
essentially constant in the range Ti to T2, it can be 
calculated using 

RT1T2 (K2'\ 
A^'°=(T-^k1Mi (III-68) 

The standard transformed enthalpy of reaction can 
also be determined calorimetrically, but corrections 
have to be made for the heat of reaction of the buffer 
with the H+ and Mg2+ produced in the reaction.50 

The standard transformed Gibbs energy of forma
tion and the standard transformed enthalpies of 
formation of reactants at specified pH and pMg are 
defined by 
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ArG'° = Jv/AfG'^i) (111-69) 

A1H'0 = ^v{Afl'°(i) (111-70) 

where the v{ are the apparent stoichiometric num
bers of the reactant i in a biochemical equation, like 
eq 111-55, written in terms of reactants. 

The standard transformed Gibbs energy of forma
tion and standard transformed enthalpy of formation 
of a reactant at specified pH and pMg can be 
calculated if the thermodynamic properties are known 
for the species involved. These properties can be 
calculated for species by use of formation reactions 
in which the usual standard state of molecular 
hydrogen is replaced by hydrogen ions at the desired 
pH and the usual standard state for magnesium is 
replaced by magnesium ions at the desired pMg. 
When a reactant consists of several species, the next 
question is "Given the standard transformed ther
modynamic properties of the species, what are the 
values of the standard transformed properties for the 
reactant?" This question is answered, as it was in 
the preceding section on gas reactions, by pointing 
out that this requires the same calculation as the 
calculation of the standard thermodynamic properties 
of an isomer group at equilibrium. Therefore, eqs III-
30, 111-31, and 111-32 are used. 

Table 1 shows the standard formation properties 
of a number of species involved in the hydrolysis of 
glucose 6-phosphate. The first two columns show 
properties of species at zero ionic strength, as in the 
usual thermodynamic tables. The second two col
umns show the transformed properties of reactants 
at pH 7, pMg 3, and 0.25 M ionic strength. 

A chemical equation can be written for the hy
drolysis of glucose 6-phosphate: 

G6P2~ + H2O = glucose + HPO4
2" (111-71) 

The equilibrium constant for this chemical reaction 
can be calculated from values in Table 1: 

#(298.15 K, 1 bar, 7 = O) = 

[glucose][HPQ4
2"] 

[G6P2~]c° 
= 80 (111-72) 

The standard state concentration c° is 1 M. The 
biochemical equation for the hydrolysis of glucose 
6-phosphate is 

G6P + H2O = glucose + P1 (111-73) 

The apparent equilibrium constant for this biochemi
cal reaction can be calculated from values in Table 
1: 

iT(298.15 K, 1 bar, pH 7, pMg 3,1 = 0.25 M) = 
CgIuCOSe][P1] 

[G6P]c° = 108 (111-74) 

These equilibrium constants are not very different 
because insignificant amounts of H+ and Mg2+ are 
produced by this reaction at pH 7, but much larger 
differences are found for the hydrolysis of ATP, for 
example. 

The standard formation properties have been cal
culated for the reactants in the ATP series51 at 298.15 
K, 1 bar, pH = 7, pMg = 3, and I = 0.25 M. Since it 
has not been possible to calculate the standard 
formation properties of any species in the ATP series, 
these calculations have been made with the conven
tion that the uncharged species of adenosine has AfG° 
= Afff0 = 0 at 298.15 K, 1 bar, and 7 = 0. 

For many biochemical reactants, the acid and 
magnesium dissociation constants have not been 
measured, but their standard transformed Gibbs 
energies and enthalpies under specified conditions 
can be determined experimentally. If apparent equi
librium constants are measured for reactions of that 
reactant under the specified conditions, eqs 111-69 
and 111-70 can be used directly to calculate the 
transformed formation properties. 

The changes in binding52,53,54 of H+ and Mg2+ in a 
biochemical reaction at specified pH and pMg can be 
calculated from the changes in K' with pH and pMg 
at the specified pH and pMg. This is possible 
through Maxwell equations of eq 111-62. This equa
tion for a single reaction in terms of reactants can 
be written 

(dG')TtP = 2.303n'(H+)RT dpH + 

2.30371'(Mg2+)RT dpMg + A1G' d f (111-75) 

where ArG' is the reaction Gibbs energy given by 

\G' = (%) = A r G ' 0 + RTInQ' (111-76) 
r ^ 3 | ;T,P,pH,pMg r 

where Q' is the apparent reaction quotient written 
in terms of sums of concentrations of reactants, each 
divided by c°. The Maxwell equation for the first and 
third terms is 

Jdn'iH ^ /(ET)] /3ArG'\ 
2.303RT\ a&/ = "TiJ-

3£ /r^pH.pMg \ 3pH /7\p,pMg,r 
(111-77) 

The derivative on the left side is the change in 
binding of hydrogen ions A1JV(H+) in the biochemical 
reaction: 

A1JV(H+) = -(^f) (HI-78) 
r l 3pH 'r .̂pMg 

where 

A1JV(H+) = ^NfR+) (111-79) 

There is, of course, a similar equation for the change 
in binding of magnesium ions. Taking the cross 
derivatives yields 

(8A1N(H+)] _ /3A^(Mg2+) 
I 3pMg /T\P>PH I 3pH T^.pMg 

(111-80) 

This expresses the linkage between the change in 
binding of H+ and Mg2+ in the biochemical reaction. 

The comments about the conservation matrix A, 
the stoichiometric number matrix v, apparent con
servation matrix A', and apparent stoichiometric 
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Table 1. Standard Formation Properties and Standard 
AtH0 (kJ mol"1) AfG0 (kJ mol'1) 

7 = 0 7 = 0 
H+ 0 0 
Mg2+ -467.00 -455.30 
H2O -285.83 -237.19 
HPO4

2" -1299.00 -1096.10 1 
H2PO4- -1302.60 -1137.30 } 
MgHPO4 -1753.80 -1566.87 J 
Glucose -1262.19 -915.90 
G6P2" -2276.44 -1763.94 ] 
HG6P- -2274.64 -1800.59 } 
MgG6P -2732.04 -2234.08 J 

matrix v' in section III.A.2 apply to biochemical 
reactions at specified pH and pMg as well as gas 
reactions at specified partial pressures of reactants.55 

The apparent number F' of degrees of freedom after 
specifying pH and pMg are given by equation 111-52: 
F' = C" - p + 2. Chemical equations satisfy element 
and change conservation equations, but generally do 
not satisfy additional independent conservation equa
tions. Biochemical equations at a specified pH satisfy 
conservation equations for elements other than hy
drogen, but they often satisfy additional independent 
conservation equations because of the coupling of 
reactions through the enzymatic mechanism.56 

In making equilibrium calculations on systems of 
biochemical reactions, like glycolysis, for example, it 
is sometimes convenient to make calculations at 
steady-state concentrations of ATP and ADP because 
these reactants are provided by other series of 
biochemical reactions. This can be done by making 
a further Legendre transform to make [ATP] and 
[ADP] at specified pH natural variables of a further 
transformed Gibbs energy.57 This is referred to as a 
level 3 calculation, where level 1 is in terms of species 
and level 2 is in terms of reactants at specified pH. 

The Panel on Biochemical Thermodynamics of the 
IUBMB-IUPAC Joint Commission on Biochemical 
Nomenclature has made Recommendations for No
menclature and Tables in Biochemical Thermody
namics.58 

C. Ligand Binding and Denaturation of 
Macromolecules 

Wyman59-61 used Legendre transforms in the ther
modynamic treatment of the binding of ligands by 
hemoglobin and other macromolecules. This is not 
the place to review that large field of activity, but it 
is necessary to comment on the relation of Wyman's 
t reatment to that discussed in this section. As 
pointed out by Schellman,62 Wyman's binding poten
tial is a transformed Gibbs energy that has as 
independent variables the intensive properties of 
ligands (concentrations or activities), rather than the 
usual extensive composition variables, which char
acterize the Gibbs energy. Schellman goes on to 
show that the equations used by Wyman can be 
obtained by defining a transformed Gibbs energy by 
subtracting n^ut for all species except for the macro-
molecule and then dividing by the amount of the 
macromolecule to obtain an apparent chemical po
tential which contains the binding potential defined 
by Wyman. He points out the strong connection 

Alberty 

ansformed Formation Properties at 298.15 K and 1 Bar 
Afff'° (kJ mol-1) AfG'0 (kJ mol"1) 

pH 7, pMg 3,1 = 0.25 M pH 7, pMg 3,1 = 0.25 M 

-286.65 -155.66 

-1299.12 -1059.55 

-1267.11 -426.70 

-2279.09 -1318.99 

between the binding potential and the grand parti
tion function. Schellman63'64 has shown that these 
methods can also be applied to the thermodynamic 
analysis of denaturation of proteins by solute. A 
solution containing water (species 1), macromolecules 
(species 2), and small molecule solutes (species 3 and 
higher) was treated by use of a transformed Gibbs 
energy G(1,2) defined by 

G(l,2) = G - JjXjUj (111-81) 

The differential of G(l,2) at constant T and P is 

dG(l,2) = /I1 An1 + n2 dn2 - ^n,- d/i, (111-82) 

This approach had been used by Schellman65 to 
investigate the interaction of two solution compo
nents, A and B, with the macromolecule and with 
each other. Three cases were considered: (1) A and 
B are ligands that bind stoichiometrically to the 
macromolecule, as in Wyman's binding polynomial 
analysis. (2) A and B are two substances (at high 
concentrations) that interact selectively with the 
macromolecule. (3) A is a species that binds stoichi
ometrically to the macromolecule, while B is a 
component at high concentration that interacts weakly 
with the macromolecule. 

IV. Transforms for Gravitational and Centrifugal 
Work 

A. Gravitational Work 

1. The Fundamental Equation for the Gibbs Energy 

When gravitational work is involved, the funda
mental equation for G can be written66,67 

N 

dG = SdT+VdP + Yj*i &ni + Tp dm (IV-I) 
f = i 

where \p is the gravitational potential (gh, where g 
is the acceleration of gravity and h is the height above 
the surface of the earth) and m is the mass of the 
system. A prime has been put on /i; because we are 
considering work in addition to PV work and want 
to save fit for later use in eq IV-3. The gravitational 
work term can be written ipYMi dn*, where M; is the 
molar mass of species i, so that 
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N 
dG =-SdT+VdP + J(Ji1' + xpM{) dnt (IV-2) 

j = i 

Since the natural variables are T, P, and rn, this 
equation can be written 

N 
dG = -S dT + VdP + Jjit dnt (IV-3) 

i=l 

so that the familiar form of the fundamental equation 
is retained with 

9G\ 

dniJTJ>,nj 
(IV-4) 

where j ^ i and G = Yn^i- G can be used to express 
the criterion of equilibrium at specified T and P; 
(dG)Tj> < 0. 

According to eqs IV-2 and IV-3, the chemical 
potential fa involves two contributions when gravi
tational work is included: 

H1 = fit' + TpM1 (TV-S) 

Riedi68 generalizes on this equation by pointing out 
that the chemical potential of a species in a system 
with potential differences may be written as the sum 
of an internal contribution (in this case JX{) and an 
external contribution (in this case, ipMi). As he 
states, since (ii must be constant throughout the 
system, it follows that the internal contribution («;') 
is a function of the potential. Gibbs1 referred to fi( 
as an intrinsic potential. In this case the chemical 
potential fit of a species is independent of its height 
above the surface of the earth. This fact is used 
below to derive the barometric formula for an ideal 
gas in an isothermal atmosphere. Equation IV-3 can 
be integrated at constant T, P, and composition to 
obtain 

G = JnJi1 (IV-6) 

The expression for the entropy of the system can be 
obtained by use of 

s = A§)P:ni = I ^ = 5>A' (iv-7) 

where the second form comes from taking the deriva
tive of the right side of eq IV-5. The expression for 
the enthalpy of the system can be obtained by use of 
the Gibbs-Helmholtz equation 

H^-T2 d(GIT) 

dT PA, 
= JniHi = Jni(Hi' + yMl) 

(JV-S) 

where the second form comes from using the right 
side of eq IV-5. Thus H/s is a function of the 
gravitational potential, but S/ is not. 

2. The Fundamental Equation for the Transformed Gibbs 
Energy 

In order to learn more about the nature of fi{, let 
us make the following Legendre transform in order 

to interchange the roles of ip and m in the funda
mental equation of thermodynamics. 

G' = G-ipm (IV-9) 

Taking the differential of the transformed Gibbs 
energy yields 

dG' = dG- rpdm-m dip 

Substituting eq IV-I yields 

(IV-IO) 

N 
dG' =-SdT+VdP + Jji/ dnt - m dip (IV-Il) 

i=\ 

Thus the natural variables of the transformed Gibbs 
energy G' are T, P, nt, and ip. G' can be used to 
express the criterion of equilibrium at specified T, 
P, and tp; (dG')T?,y ^ 0. Equation IV-Il shows that 

f — ) [toil Tf,nj,ip 
= f*i (rv-i2) 

where j * i, and so JX{ is a function of ip. Thus fit' is 
the transformed chemical potential of i at specified 
T, P, xp, and composition. Equation IV-12 shows 
exactly what [i/ is. Equation IV-11 can be integrated 
at constant T, P, ip, and composition to obtain 

G' = JJI,M; (IV-13) 

Another way to derive this equation, which perhaps 
gives more insight, is to substitute G = YAiHi and m 
= YnMi into the Legendre transform (eq IV-9) to 
obtain 

G' = Jn1H1 - XpJn1Mi = Jn1Ui1 - IpM1) = Jn^1' 
(rv-i4) 

As in the case where the chemical potential of H+ 

was specified, the Legendre transform leads im
mediately to an expression for a transformed chemi
cal potential of a species (see eq 111-60). 

It is instructive to use eq IV-Il to calculate the 
thermodynamic properties S, V, fi'> a n d m for a one-
component ideal gas system in a gravitational field. 
The Gibbs energy of the system is given by 

G = n[^°+.RTln(P/P0)] (TV-15) 

where P° is the standard state pressure. The trans
formed Gibbs energy is given by eq IV-9, which 
becomes 

G' = nlH0 + RT In(PZP0) - xpM] (IV-16) 

We can take the partial derivatives of G' according 
to eq IV-Il to obtain the values of S, V, H', and m: 

(dG'ldT)Pny = - S = n[-S° + R In(PZP0)] (IV-17) 

OGVBP)7^ = V = nRT/P (IV-18) 

(dG'/dri)TiPtV =[i' = [i-xpM (IV-19) 



1472 Chemical Reviews, 1994, Vol. 94, No. 6 Alberty 

OG'/avOjy^ = m = nM (IV-20) 

The second form on the right in these four equations 
was determined by taking the indicated derivative 
of eq IV-16. The transformed enthalpy is defined by 

Substituting n/u' = 
{PIP0)} for S yields 

H' = G' + TS (IV-21) 

nfi - mxp for G' and n[S° - R In-

H' = n/u-mxp + nTS = H - rmp (IV-22) 

where H = G + TS. Thus the gravitational potential 
affects the transformed Gibbs energy G' and trans
formed enthalpy H', but does not affect S and V of 
an ideal gas. 

3. Derivation of the Barometric Formula 

In the earth's gravitational field, the gravitational 
potential is proportional to the height h above the 
surface for distances above the surface that are small 
in comparison with the radius of the earth. For an i 
ideal gas the eq IV-5 can be written 

Hi = /V° + RT ln(P/P°) + KgM1 (IV-23) _[_ 

Since pn is independent of h and /u° is a constant, Pi 
decreases as h increases. Taking the derivative of 
eq IV-23 yields 

dM =RT(dl± 
dhlT P1 \ dh IT 

+ gMt = 0 (IV-24) 

and 

dP, 
P; 

8M1 

~RT 

Integrating yields 

P. = P-(A=OeXp -

dh 

gMth 

RT 

(IV-25) 

(IV-26) 

The exponential drop in pressure with height in an 
idealized atmosphere is illustrated in Figure 4. 

For a chemical reaction at a specified gravitational 
potential xp, the equilibrium criterion is (dG')7\p,y = 
O. Equation IV-Il indicates that 

5 > > i = 5 > i - ^M1)V1 = £ ^ = O (IV-27) 

since YMiVi = O. Thus we obtain the familiar equa
tion for chemical equilibrium; the effect of the gravi
tational potential xp on the products of a reaction is 
balanced by the effect of xp on the reactants, so that 
there is no effect of a gravitational field on the 
equilibrium constant. 

B. Centrifugal Work 

The potential xp in a centrifugal field is given by66 

xp = - 1 Z 2 C O ^ (IV-28) 

where <x> is the angular velocity and r is the distance 

PrIh = O) 

Figure 4. Partial pressure of ideal gas i in the earth's 
atmosphere assuming the temperature and acceleration of 
gravity are independent of height. 

C y 
- A L 

L+AL 

- • J 

(a) b) 

Figure 5. Two ways in which a solid might change it 
dimensions under the action of force f: (a) tensile stress 
resulting in elongation by AL, and (b) shearing stress 
resulting in displacement AL. The cross sectional area is 
represented by A8. 

from the axis of rotation. Since the treatments of 
gravitational and centrifugal fields in terms of the 
potential are the same, there is no need to repeat the 
equations of the preceding section. The equation for 
sedimentation equilibrium in a centrifuge is well 
known.69 

V. Transforms for Mechanical Work 

A. Work of Tensile Stress 

1. Without Coupling to the Chemical Work41-70'71 

When a solid is compressed uniformly, the work of 
- P dV is included in eq 1-1. But there are two other 
ways a solid might change its dimensions under the 
action of a force, as shown in Figure 5. When a solid 
is subjected to a tensile stress, it is elongated by AL, 
the strain, as shown in a. (Normal stress a is defined 
as force per unit area, but here we will simply 
represent the differential work with f AL.) When a 
solid is subjected to a shearing stress, it deforms like 
a deck of playing cards, as shown in b. Here we will 
be interested only in the elastic region so that the 
changes are reversible. Actually the deformation of 
a solid is much more complicated and requires the 
use of tensors, and only two simple examples are 
considered here. 

When an isotropic solid is under tension in one 
direction, it is convenient to use the internal energy 
U and the Helmholtz energy A, rather than the 
enthalpy H and Gibbs energy G, because PV work is 
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not involved to an appreciable extent. Thus the 
fundamental equations for U and A can be written 

dU=TdS + fdL (V-I) 

and 

dA = -SdT + fdL (V-2) 

where f is the tension force and L is the length of 
the solid in the direction it is being stretched. Note 
that the force is given by the derivative of A with 
respect to length at constant temperature: 

f=(dAJdL)T (V-3) 

Equation V-I can be used to derive the following 
thermodynamic equation of state for the solid: 

(dU/dL)T = T(dS/dL)T + f (V-4) 

The following Maxwell equation can be obtained from 
eq V-2: 

(9/79T)L = -(dS/dL)T (V-5) 

This is important because it provides an experimen
tal means for evaluating the rate of change of the 
entropy with respect to length at constant tempera
ture. Substituting this relation in eq V-4 yields 

(dU/dL)T = f- T(df/dT)L (V-6) 

Now all of the terms on the right-hand side are 
measurable. For rubber, it is found that the force at 
constant length is proportional to the temperature 
so that f— Td(L), where 0(L) is a function of L that 
has to be measured experimentally. Inserting this 
relation in eq V-6 shows that 

(dU/8L)T = f-f=0 (V-7) 

Thus the internal energy of the rubber does not 
change with extension. Equation V-5 shows that the 
force exerted by the stretched rubber is given by 

f= -T(dSldL)T (V-8) 

Thus to the extent that the force is proportional to 
T, the tension is an entropy effect. The chains 
between attachment points in the rubber have many 
configurations with very nearly the same energy. 
This model can be treated by statistical mechanics.5 

In order to obtain a thermodynamic potential with 
f a s a natural variable, the following Legendre 
transform can be used: 

A'=A-fL (V-9) 

Taking the differential of A' and substituting eq V-2 
yields 

dA' = -S AT - L df (V-IO) 

yields the Maxwell equation 

(dSldf)T = (dLldT)f (V-Il) 

2. With Coupling to Chemical Work 

The contraction of muscle and the rotation of 
flagella are examples of the conversion of chemical 
energy into mechanical work. The fundamental 
equation for the Gibbs energy for a system involving 
a single chemical reaction and mechanical work is 

dGsys = - S dT + V dP + ArG d£ - fdL (V-12) 

where A1-G is the reaction Gibbs energy at specified 
concentrations of the reactant species and | is the 
extent of reaction. A negative sign is used in the 
work term so that the force can be taken as positive; 
thus dL < 0 corresponds to mechanical work done 
on the system. If the chemical reaction is coupled 
with the decrease in length, as it is in muscle, dL = 
—k d£, where k is a constant. In this case eq V-12 
becomes 

dGsys =-SdT+ VdP + (A1G + kf) d£ (V-13) 

so that the natural variables of G are T, P, and £. At 
constant T, P, and concentrations of the reactant 
species, 

(dGsyMhp = ArGSys = ArG + kf (V-U) 

At equilibrium this quantity is equal to zero, and so 
that the force at equilibrium is given by 

f= -A1GZk (V-15) 

where ArG is negative. In biochemical examples, the 
pH is generally constant so that a Legendre trans
form should be used to make pH an independent 
variable, as discussed in section III.B. A more 
detailed model is needed to discuss muscle contrac
tion, but this simple example indicates how the force 
might be related to the thermodynamics of the 
reaction. 

B. Work of Shear Stress 

The shear stress r is defined as force per unit area, 
but the force vector lies in the plane of the area rather 
than perpendicular to it (see Figure 5b). The shear 
strain is usually taken to be ALIL, but we will simply 
use the expression TASAL for the work. When PV 
work is not involved to an appreciable extent, the 
fundamental equations for U and A can be written 

AU = T dS + ft dn + tAs dL (V-16) 

and 

dA = - S dT + ft dn + xAs dL (V-17) 

It is convenient to use a Legendre transformed 
Helmholtz energy defined by 

A' = A - U^-TA8L (V-18) 

Note that this is a complete Legendre transform. It Taking the differential of A' and substituting eq V-17 
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liquid: 

Figure 6. Expansion of a drop of liquid in the absence of 
a gravitational field. Surface tension causes a pressure in 
the drop that is inversely proportional to the radius of 
curvature r. 

yields 

dA' = -S &T - n dfi - xL dAs - A3L dr (V-19) 

where xL is a kind of surface tension. This approach 
can even be used to study liquids when the distances 
between the parallel planes are only a few molecular 
diameters, because st ick-sl ip motion occurs.72-73 

Vl. Transforms for Surface Work 

A. One-Component Systems 
The fundamental equation for the Gibbs energy of 

a one-component system involving surface work66'6774 

is a special case of eq 1-3. However, for certain 
geometries of the system,75 dAs may be proportional 
to dn. Figure 6 shows a spherical drop in the absence 
of a gravitational field. The work of expanding the 
surface area against surface tension can be measured 
by the force on a piston and the distance traveled. 

dw = f dx = P dV = P4itr2 dr (VI-I) 

since V = (4/3VtT3. The differential work is also given 
by dw — ydAs. Equating two expressions for dw with 
dAs replaced with As = 4jrr2 and dAs = 8nr dr yields 
the following expression for the pressure in the drop: 

P = 2y/r (VI-2) 

The differential of the volume of the sphere is dV = 
4JT2 dr and the differential of the surface area is dAs 

= 8nr dr, and so 

dA, = (2/r) dV = (2/r)V dn (VI-3) 

where V is the molar volume of the pure liquid and 
the differential volume can be written as dV —Vdn. 
Thus, the differential of the surface area is propor
tional to the differential of the amount of substance 
in the sphere. The fundamental equation for G can 
be written as 

dG = -S dT + V dP + pt dn + (2yV/r) dn (VI-4) 

where a prime is put on the ft' so that fi can be saved 
for its usual meaning. Since the derivative of the 
Gibbs energy with respect to amount of liquid at 
specified T and P is the chemical potential fi of the 

fi=fi' + 2yV/r (VI-5) 

The chemical potential ft of the liquid is equal to the 
chemical potential of the vapor with which it is in 
equilibrium. 

Equation VI-5 can be used to derive the Kelvin 
equation for the vapor pressure of the sphere of liquid 
by assuming that the vapor (with pressure p) is an 
ideal gas so that 

fi=fi° +RT ln(p/P°) (VI-6) 

where P° is the standard state pressure (1 bar). At 
equilibrium, the chemical potential fi is the same for 
the liquid and the vapor in equilibrium with it. 
Therefore, the vapor pressure will be higher than 
that over a planar surface because the liquid is 
squeezed by the surface tension. Setting the chemi
cal potential in eq VI-5 equal to the chemical poten
tial in eq VI-6 yields 

fi' + 2yVlr = fi° + RT ln(p/P°) (VI-7) 

As r — <*>, fi' — fi° + RT ln(po/P°), where p0 is the 
vapor pressure of a planar surface. Thus the trans
formed chemical potential fi' is given by 

fi' = fi0 + RT In(P0ZP0) (VI-8) 

Substituting this equation in eq VI-5 yields the 
Kelvin equation 

ln(p/Po) = (2yV/rRT) (VI-9) 

which gives the vapor pressure p of the spherical 
mass of liquid as a function of its radius of curvature 
r. (The Kelvin equation can be applied to a bubble 
in a liquid by changing the sign of the radius of 
curvature.) 

The integration of eq VI-4 yields 

G = n(fi' + 2yVlr) = nju (VI-IO) 

Thus the Gibbs energy of the liquid in a spherical 
drop is made up of two contributions. 

A Legendre transform can be used to find the 
definition of the transformed chemical potential fi'. 
The obvious Legendre transform is G' = G - yAs, but 
this is not satisfactory because y is not an indepen
dent variable. Since we want to interchange the 
extensive variable with the intensive variable in the 
(2yV/r) dn term of eq VI-4, the following Legendre 
transform is used: 

G' = G- 2yVn/r (VI-I l ) 

Taking the differential of G' and substituting eq VI-4 
yields 

dG' =-SdT+ VdP + (2yVn/r2) dr + fi' dn 
(VI-12) 

Thus the natural variables of G' are T, P, r, and n. 
Equation VI-12 shows that the transformed chemical 
potential fi' of the liquid is defined by 
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idG'/dn)TiP,=fi' (VI-13) 

Note that dividing eq VI-Il by n yields VI-5, as 
expected. 

The integration of eq VI-12 at constant T, P, and r 
yields 

G' = n/i' = n(pi- 2yV/r) (VI-14) 

where the second form has been obtained by substi
tuting eq VI-5. 

B. Multicomponent Systems 

Multicomponent systems can be treated in terms 
of surface excess properties (defined by using the 
Gibbs surface and designated by a superscript a) or 
in terms of thermodynamic properties of an interfa-
cial layer (designated by a superscript s) when there 
is a physical model of the interfacial layer.74'76 In 
both of these cases the IUPAC Recommendations by 
Everett76 use the concept that a Legendre transform 
of the internal energy by PV or yAs yields an 
enthalpy. This practice is not consistent with the 
recommendation in connection with eqs 1-2 to 1-4 that 
these definitions always be adhered to. In discussing 
surface excess properties, which are designated by a 
superscript a, Everett writes 

Ha = U°-yA& (VI-15) 

According to the conventions advocated here, this 
Legendre transform would be considered to be the 
definition of a transformed surface excess internal 
energy. 

If = IT- yAs (VI-16) 

Since V" = 0, this distinction may not appear to be 
important, but for the properties of an interfacial 
layer, Vs ^ 0, and so the distinction is important. For 
example, Everett defines the following three inter
facial enthalpies: 

5T = IT + PV5 (VI-17) 

H* = IT - yAs (VI-18) 

IT = JT + PV5 - yAs (VI-19) 

with the names interfacial PV-enthalpy, interfacial 
yA—enthalpy, and interfacial PVyA-enthalpy, re
spectively. According to the recommendations given 
here, these quantities would be referred to as the 
interfacial enthalpy Hs, transformed interfacial in
ternal energy Us', and transformed interfacial en-
thalpyi/8'. The same types of comments apply to the 
surface excess Gibbs energies. 

Lee, Klingler, and McConnell77 have recently stud
ied electric field induced concentration gradients in 
lipid monolayers. They found it convenient to use a 
chemical potential for dihydroxycholesterol in the 
monolayers that is linear in the surface pressure and 

has an additional contribution due to the applied 
electric field. 

VII. Transforms for Work of Electrical Transport 

A. The Fundamental Equations 
For a multiphase system involving electrical 

work,66-7879 eq 1-12 is 

N N 

dG =-SdT+ VdP + JjI1' dnt + X ^ d<?; 

i=1 i=1 (VIM) 

where each species contributes a term for each phase 
in which it exists. If each species exists in each 
phase, JV is the number of species times the number 
of phases. The electric potential fc of an ion depends 
upon the phase. A prime has been put on the 
chemical potential because the charge Qj contributed 
by an ion is not independent of its amount m, and 
we want to save the symbol fit for its usual meaning. 
The charge contributed by an ion to a phase is given 
by Qi = Fzitii, where F is the Faraday constant and 
Zi is the charge on the ion. Substituting this expres
sion in the fundamental equation yields 

N 

dG= SdT+ VdP + Yj^i' + Fz1(P1) dnt = 

N 

-SdT+VdP+ Y^ dnt (VII-2) 
t=i 

where the chemical potential /it of a species is given 
by 

H^lii' + zMi (VH-3) 

Thus the natural variables of G for the system are 
T, P, and rn. The chemical potential of species i in a 
particular phase is defined by the second form of eq 
VII-2, which shows that 

(dG/dn^ = ^ (VII-4) 

where,/ ^ i. Here G is the Gibbs energy of the whole 
system, but n* is the amount of species i in a 
particular phase. Since the Gibbs energy of the 
system is equal to the sum of the Gibbs energies of 
the phases, G can also be interpreted as the Gibbs 
energy of the phase containing species i in amount 
Ui. We can interpret eq VII-4 as the change in the 
Gibbs energy when a small but macroscopic amount 
of an ion is added to a particular phase of such a large 
system that we do not have to worry about the 
change in the electric potential of the phase due to 
this tiny addition of ions. This derivative is es
sentially G(N + 1) - G(N), where JV is the number 
of particles and is a very large number. The reason 
for electroneutrality is that small net charges lead 
to large electric potentials, which cannot ordinarily 
be maintained in real systems. Nevertheless, phases 
can have different electric charges, and necessarily 
do when they have different electric potentials. 

The usual integrated form of eq VII-2 applies: G 
= "LriijU,. G can be used to express the criterion of 
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spontaneous change at specified T and P; (dG)rj> £ 
0. Equation VII-2 can be used to show that at 
equilibrium the chemical potential of a species is the 
same in each phase. 

The two contributions to the chemical potential of 
an ion in a phase are sometimes referred to as the 
internal (Hi') and external (Fzt<pi) contributions.78 

Gibbs1 referred to fi{ as an intrinsic potential. Equa
tion VII-17, given later, shows that fi{ is a trans
formed chemical potential. When a system is at 
equilibrium, the chemical potential Hi of a species is 
independent of where it is in the system, no matter 
how many phases there are, whether they are solid, 
liquid, or gas, and what their electric potentials are. 
After eq VI-5 we noted that the chemical potential 
of a species is the same in two phases at different 
pressures. This is also true of the solvent in an 
osmotic pressure experiment. Since the chemical 
potential of an ion is independent of the electric 
potential of the phase at equilibrium, eq VTI-3 shows 
that the transformed chemical potential (x( depends 
on cpi according to 

^ = V1-Z1Ft1 (VII-5) 

where Hi is constant throughout a multiphase system 
at equilibrium. 

Electrochemists80,81'82 write eq VII-3 as 

H1= H1 +Z1F^1 (VII-6) 

where jut is referred to as the electrochemical poten
tial and IXi is referred to as the chemical potential. 
From the standpoint of eqs VII-I to VII-4 there are 
two problems with this equation. The first problem 
is that the derivative defining in is exactly that used 
to define the chemical potential HI (cf, eq VII-4), and 
so two symbols and two names are currently being 
used for this derivative. The second problem is that 
the chemical potential Hi in eq VII-6 is not the usual 
chemical potential and has different properties; it is 
defined by a different partial derivative, as shown 
below in eq VII-17. The usual chemical potential Hi 
has the same value throughout the phases of a 
multiphase system at equilibrium, and so we would 
expect that fit in eq VII-6 to have this property, but 
it does not. The property Hi in eq VII-6 has different 
values in different phases that are in equilibrium but 
have different electric potentials. 

The activity of a species is defined by 

H1=H1
0 +RT \n a, (VII-7) 

Therefore, eq VII-5 for the transformed chemical 
potential can be written 

Ix1' = ix° + RT In a, - Z1FcP1 = H{° + RT In at 

(VII-8) 

where the second form is obtained by taking 

li;° = ix° - Z^1 (VII-9) 

Thus the standard transformed chemical potential 
Hi'0 of an ion is equal to the standard chemical 
potential H° adjusted to potential (pi. Since the 
standard transformed chemical potential /Xi'° depends 

on the electric potential, the electric potential has to 
be part of the specification of the standard state for 
ion i when dealing with the transformed chemical 
potential. Substituting the second form of eq VII-8 
into eq VII-3 for the chemical potential of a species 
yields 

Hi = Hi'° + RT In a ; + Z1FcP1 (VII-10) 

This equation can be compared with the following 
equation 

H1 = H° + RT In a, + Z1FcP1 (VII-I l) 

that is currently used by electrochemists. In a recent 
book in electrochemistry, Rieger83 uses HI — Hi° + RT 
In cii + ZiF(Pi- Equation VII-10 has the advantage that 
Hi is the same in the various phases of a multiphase 
system, even if they have different electric potentials, 
and the symbol H(° reminds us that the standard 
transformed chemical potential depends on the elec
tric potential. 

The other thermodynamic properties of an ion in 
a phase at electric potential (pi can be calculated from 
eq VII-10: 

5'--(^L-5"-« to--
/aln a,\ -

MVk = s/(VII-12) 
J9(^T)I ffW

9lna'1 + 

Z1FcP1=H1^z1FcP1 (VII-13) 

Thus the molar entropy of an ion is not affected by 
the electric potential, but the molar enthalpy is. The 
standard transformed molar entropy is equal to the 
standard molar entropy because the electric potential 
has no effect on it; S/° = S°. The standard trans
formed molar enthalpy is given by H1'

0 = H° -
Z1F(P1. 

In order to learn more about the nature of Hi, we 
use the following Legendre transform to make the 
electric potentials of the phases natural variables: 

N N 

G' = G- JcP1Q1 = G- F JcP1Z1U, (VII-14) 
i=i ;=i 

Since rii and cpt are both variables, the differential of 
G ' i s 

N N 

dG' = dG- FJz1CP1 &nt - FJz1U1 dcpt (VII-15) 
;' = 1 i = l 

Substituting the expression for dG from the first form 
of eq VTI-2 yields 

N N 

dG' =-SdT+ VdP + | > / d7if - FJjS1Ti1 d(P< 

' _ 1 l~X (VII-16) 

The natural variables of the transformed Gibbs 
energy G' are T, P, nt, and Cp1. G' can be used to 
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express the criterion of equilibrium at specified T, 
P, and <p; (dG')Tj>,^ ^ 0. According to eq VII-16, 

(dG'/dn^.,=^ (VII-17) 

where j ^ i. This emphasizes again that fi{ is a 
function of T, P, (pi, and composition. Since JX{ is the 
partial derivative of the transformed Gibbs energy 
G', it is called the transformed chemical potential of 
i at specified T, P, (pi, and amounts of other species 
in the phase. Equation VII-16 can be integrated at 
constant T, P, fa, and composition to obtain 

G' = X^/ (VII-18) 

This equation can also be derived by substituting G 
= Zn̂ Wi in the second form of eq VII-14. 

The transformed molar entropies and enthalpies 
of an ion in a phase with an electric potential can be 
calculated by starting with eq VTI-5. 

/9ln a,\ -
fl2\Vk=s'(Vn-19) 

The transformed molar entropy is not affected by the 
electric potential and is equal to the molar entropy, 
as previously shown in eq VII-12. The transformed 
molar enthalpy is defined by 

H/ = 
_rrQ M'/T) 

8T P,nt 

= H< RT2I 
/ainoA 

I dT /pA 

Z1FcP1=H1 

dT 

Z1FcP1 (VII-20) 

Thus, the transformed molar enthalpy of an ion 
depends on the electric potential in the same way as 
the transformed chemical potential. 

B. Thermodynamic Properties and Chemical 
Reactions 

Since G = Xn^;, the expressions for the entropy S 
and enthalpy H for an open system involving electri
cal work can be obtained in the usual way. Equation 
VII-2 can be used to derive the equilibrium constant 
expression for a chemical reaction involving ions in 
different phases. Since XVJZ; = 0, there is no effect 
of the electric potential on the equilibrium constant 
of a reaction that occurs in a single phase. But when 
some of the reactants and products in a chemical 
reaction are ions that are in a phase at a different 
electric potential, the equilibrium constant K for the 
reaction will be a function of the difference in 
potentials. 

An issue that has not been discussed much in this 
review is the form of the phase rule when work in 
addition to PV work is involved. Rock84 has called 
attention to the fact that the phase rule for an 
electrochemical cell is F = C - p + 3. 

C. Derivation of the Equation for the Membrane 
Potential 

When there is equilibrium between phases a and 
/9 that involve the same solvent but are separated by 

Figure 7. A sample with electric dipole moment p is 
shown at an angle 6 with respect to the electric field. The 
energy of the dipole in the field is E'dp = Ep cos 8. 

a membrane and have different electric potentials, 
the fundamental equation for G for the two-phase 
system is 

dG =-SdT+VdP + X ^ ( a ) dnt(a) + 

JjtiW dntf) (VII-21) 

If the membrane is permeable to ion i, then it can be 
shown that at equilibrium 

^(CO = /itf) (VII-22) 

Substituting eq VII-10 yields 

^{a) + RT In a,ia) + ztF(p(a) = 
/*/°08) + RT In atf) + Z1F^) (VII-23) 

When the solvent is the same on both sides of the 
membrane, the standard transformed chemical po
tentials of i in the two phases are equal because they 
are defined at the same electric potential. In this 
case, eq VTI-23 can be rearranged to 

(Pi/3) - <p(a) = 
RT, atf) 
Z1F a ;(a) 

(VTI-24) 

VIII. Transforms for Work of Electric Polarization 

The thermodynamics of electrical polarization has 
been treated authoritatively in a number of 
places.66-85,86 The energy due to the electric polariza
tion of a body in an electric field is given by the dot 
product E'dp — Ep cos 6, where E is the vector 
electric field strength, p is the vector total dipole 
moment of the system, E is the magnitude of the 
electric field, p is the magnitude of the total dipole 
moment, and 6 is the angle between the vectors 
(Figure 7). Thus the fundamental equation for the 
internal energy U of a closed system without chemi
cal reaction is 

dU = T dS - P dV + Edp (VIII-I) 

Integration of this equation yields 

U = TS-PV + Ep (VIII-2) 

For an isotropic system, the differential of polariza
tion work can be written E dp. 

In statistical mechanics it is more convenient to 
take the electric field strength as a natural variable, 
and this corresponds with making the Legendre 
transform 

U = V- Ep (VIII-3) 
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This yields the following fundamental equation for 
the transformed internal energy. 

dU' = TdS-PdV- pdE (VIII-4) 

The difference between U and If is simply Ep, and 
for some purposes this is not a significant difference, 
since the absolute value of U is unknown. The 
integration of eq VIII-4 at a constant electric field 
strength yields 

V = TS- PV (VIII-5) 

It is of interest to consider polarizable systems 
involving elongation work, but negligible PV work. 
The fundamental equation for U for such a system 
is 

dU = TdS+fdL+ Edp (VIII-6) 

As usual the natural variables are all extensive. In 
discussions of thermoelectric, pyroelectric, and piezo
electric effects, it is advantageous to use a funda
mental equation with intensive variables as natural 
variables. It is therefore convenient to use the 
transformed Gibbs energy defined by 

G' = G - fL - Ep = 0 (VIII-7) 

This is actually a complete Legendre transform, and 
so the result of taking the differential of G' and 
substituting eq VIII-6 is the Gibbs-Duhem equation: 

0 = -S dT + V dP - L df - pdE 

orO = -SdT + VdP-Ldf-pdE 
(VIII-8) 

where the last form applies to an isotropic system. 
This equation yields three Maxwell equations:86 

thermoelast ic 

(8S/df)ET = (SL/dDfj: (VIII-9) 

pyroelectric 

(dS/8E)T/=(dp/dT)frE (VIII-10) 

piezoelectric 

(dL/dE)T/=(dp/df)TJS (V l i l - i i ) 

Piezoelectricity is electricity or electric polarity due 
to pressure on a solid. Pyroelectricity is the electric 
polarization produced by a change in temperature. 
Thermoelasticity is the change in length due to 
temperature in an electric field. These closely related 
phenomena are a good example of the usefulness of 
Legendre transforms to obtain Maxwell equations 
with derivatives with respect to intensive variables 
and with the other intensive variables held constant. 

Another Maxwell equation of the Gibbs—Duhem 
equation can be used12,13 to treat electrostriction, 

Alberiy 

Figure 8. A sample with a magnetic dipole moment m is 
shown at an angle 8 to the magnetic field of a solenoid. 
The energy of the magnetic dipole in the magnetic field is 
given by B'm = Bm cos 0. 

namely (SVIdE)Tf, where E is the magnitude of the 
electric field strength. 

IX. Transforms for Work of Magnetic Polarization 

Magnetic work is discussed authoritatively several 
places,6686-90 and so it is not necessary to go into all 
of the details here. The energy due to the magnetic 
polarization of a body in a magnetic field is given by 
the dot product B'm = Bm cos 0, where B is the 
magnetic flux density (magnetic field strength), m 
is magnetic dipole moment (the total magnetic mo
ment of the system), B is the magnitude of the 
magnetic field strength, m is the magnitude of the 
total magnetic moment of the system, and 0 is the 
angle between the vectors (Figure 8). We will exclude 
ferromagnetic substances and substances exhibiting 
hysteresis effects from our considerations here. Thus, 
the fundamental equation for U can be written 

dU = TdS + Bdm (LX-I) 

when PV work is ignored. For an isotropic sample, 
the work term can be written B dm, where B and m 
are the magnitudes of the vector quantities: 

dU = T dS + B dm (IX-2) 

In making statistical mechanical calculations517 it 
is more convenient to use the magnetic field strength 
B as an independent variable. This can be done by 
making the Legendre transform 

U = U- Bm (IX-3) 

to obtain 

dU' = TdS- mdB or TdS-mdB (LX-4) 

where the last form is for an isotropic system. 
In order to treat adiabatic demagnetization, it is 

advantageous to also have temperature and magnetic 
field strength as intensive variables, and so for a 
closed system that does not involve PV work or 
chemical reaction, a transformed Gibbs energy is 
defined by 

G' = G-Bm (IX-5) 

This is a complete Legendre transform, and it yields 
the following Gibbs—Duhem equation: 
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0 = -S dT - m dS (IX-6) 

This yields the Maxwell equation 

(8S/dB)T = {dm/dT)B (IX-7) 

The effect of a magnetic field on a chemical reaction 
producing a paramagnetic species from a diamagnetic 
species is small and readily calculated. 

X. Discussion 

There is another Legendre transform of the inter
nal energy that was not discussed above, and that is 
a Legendre transform to bring in the velocity v of the 
system. A thermodynamic system may be moving 
with respect to some coordinate system. This was 
not discussed above because we are not interested 
in having the chemical properties of a system de
pendent on its velocity. However, this Legendre 
transform clarifies the significance of the internal 
energy. The energy E of a system can be considered 
to be made up of its internal energy U and its kinetic 
energy Ek. 

E = U + Ek = U + (V2IZ)^JIiMi (X-I) 

The differential of the energy is 

AE = &U + [V2IZj^M1 dnt + v Av^n1M1 (X-2) 

Substituting the expression for dU for a system 
involving chemical work yields 

AE = TdS-PdV+ Yj^i + V2M1WdU1 + 

v dv^Mi (X-3) 

At constant velocity the last term disappears, but we 
are not interested in a chemical potential that is a 
function of the velocity. 

Legendre transforms are important because they 
can be used to define thermodynamic potentials that 
have intensive variables as natural variables. In 
general, intensive variables are easier to control in 
the laboratory than extensive variables. The natural 
variables of the internal energy are all extensive 
variables, but Legendre transforms can be used to 
define thermodynamic potentials with one or more 
natural variables that are intensive. Any combina
tion of extensive and intensive variables can be used, 
with each natural variable coming from a different 
conjugate pair. When a thermodynamic potential of 
a system can be determined as a function of its 
natural variables, all of the thermodynamic proper
ties of the system can be calculated by taking partial 
derivatives. A thermodynamic potential can be used 
to express the criterion for spontaneous change under 
the condition that its natural variables are held 
constant. Since there are so many thermodynamic 
potentials, actually an infinite number when chemi
cal potentials of species are used as natural variables, 
it is necessary to be able to give them symbols that 
indicate their natural variables. Callen10 has shown 
how to do this by using U[PQ,...JPa], where Po, ..., Ps 
represent the intensive variables that have been 
introduced by Legendre transforms. Since many 

additional thermodynamic potentials that are like H, 
A, and G can be defined by Legendre transforms, 
Callen's nomenclature can be extended to utilize H, 
A, and G with an indication in brackets of the 
additional intensive variables that have been con
verted to natural variables by the use of a Legendre 
transform. In calculations using a particular set of 
natural variables, this nomenclature is clumsy, and 
so it is convenient to indicate the transformed 
thermodynamic properties with primes. For example 
U', H', A', and G' can be used to represent trans
formed internal energies, transformed enthalpies, 
transformed Helmholtz energies, and transformed 
Gibbs energies; when this is done it is important to 
show in the context which intensive variables have 
been introduced as natural variables. 

Legendre transforms are also useful in irreversible 
thermodynamics.91 

Since the structure of thermodynamics is math
ematical, certain practices that are found in the 
literature should be avoided. Since H, A, and G are 
defined by well-known Legendre transforms, these 
definitions should always be followed. The thermo
dynamic potentials U, H, A, and G can have extensive 
natural variables arising from non-PV work, but 
when intensive natural variables arising from non-
PV work are introduced, the symbols U, H, A, and G 
should not be used. In order to emphasize the 
natural variables for a thermodynamic potential, it 
is convenient to simply indicate these variables in 
parentheses. In representing partial derivatives of 
thermodynamic potentials, only natural variables 
should be used as subscripts. 

The concept that the chemical potential /^ of a 
species is the same in all phases of a system at 
equilibrium is so important that it should not be lost 
by using fit for a different thermodynamic property, 
as it is currently in electrochemistry. It is confusing 
that in electrochemistry, the symbol \ii and the term 
chemical potential are used for a property that 
depends on the electric potential of the phase, so that 
fit is not uniform throughout a system with phases 
at different electric potentials. 

Whenever a non-PV work term is proportional to 
the amount of a species, the use of a Legendre 
transform leads to a transformed chemical potential. 
Examples, include 

/V=/* ; -A^(H + )MH + ) -

A^(Mg2VMg2 +) (111-61) 

IxI = H1-^M1 (IV-5) 

Pf = H-Z1Fh (VII-5) 

These equations show how the transformed chemical 
potentials change with ^(H+) and MMg2+), gravita
tional potential ip, and electric potential <pt, since /Xt 
is constant throughout a system. 

Wyman92 has discussed the fact that the Legendre 
transforms applicable to any thermodynamic poten
tial form a group. This is indicated by the fact that 
any number of separate transformations, each in
volving a single variable, are equivalent to a single 
transformation. Also two successive applications of 
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the same transformation involving the same set of 
variables restores the initial thermodynamic poten
tial to itself. Since the same result is obtained for 
all possible orders of the transformations, the group 
is Abelian. 

Legendre transforms are used in thermodynamics 
to define thermodynamic potentials with intensive 
variables as natural variables. In statistical me
chanics these various thermodynamic potentials are 
calculated by using different ensembles. Thus mak
ing Legendre transforms in thermodynamics has its 
counterpart in statistical mechanics in devising new 
ensembles. The thermodynamic potentials defined 
by use of Legendre transforms are represented by 
symbols and names, and the corresponding partition 
functions of statistical mechanics are represented by 
symbols and names. There are at least nine kinds 
of work that may be involved and each involves an 
intensive variable that can be introduced as a natural 
variable of a transformed thermodynamic potential. 
These intensive variables can be introduced in vari
ous combinations, and so there is a large number of 
thermodynamic potentials and corresponding parti
tion functions. In fact the number of possible ther
modynamic potentials and partition functions is 
infinite since chemical potentials of species can be 
specified. In statistical mechanics the symbols Q, Q, 
and A are widely used for the microcanonical parti
tion function, canonical ensemble partition function, 
and isothermal-isobaric partition function, respec
tively. Therefore, Q', Q', and A' could be used for 
the ensembles that yield S', A', and G', respectively. 
Various Greek letters have been used for some of 
these, but symbols like Q[pt{\ and A[y] are recom
mended here. 

In writing this article, I have tried to follow certain 
principles, and I recommend them to others: 

(1) The definitions H = U + PV, A = U - TS, and 
G = U + PV - TS should not be altered. 

(2) The fundamental equations for U, H, A, and G 
may contain terms for additional kinds of work where 
the differential quantities for these additional kinds 
of work are extensive variables. Thus the extensive 
variables in non-PV work are natural variables of U, 
H, A, and G, if they are independent of other natural 
variables. 

(3) The chemical potential of species i is defined 
by 

/ai7\ =(®i\ =(—] 
1 \dni)S1V1TIjX1 X^iISP1U1X1 [^"•i/T.V.njXi 

(f] (X-4) 
K^iIrP1U1X1 

in a nonreaction system. Here Xi represents all of 
the independent extensive variables in non-PV and 
nonchemical work involved. It is important to retain 
[JLi for this purpose because [it is the same throughout 
a multiphase system at equilibrium, even if the 
phases are different states of matter, have different 
pressures, or different electric potentials. When a 
system involves chemical reactions at equilibrium, 
the Ui in the derivatives is replaced by the amount 
/ici of component i and the nj in the subscript is 

replaced with ricj- Even when chemical reactions are 
at equilibrium, the chemical potentials in eq X-4 are 
chemical potentials of species. 

(4) In order to introduce the intensive variables of 
non-PV work as natural variables, it is necessary to 
define thermodynamic potentials in addition to U, H, 
A, and G with Legendre transforms. These ad
ditional thermodynamic potentials have intensive 
properties for non-PV work as natural variables. 
Legendre transformed thermodynamic potentials can 
be represented by U', H', A', and G', but it is 
necessary to specify the intensive variables that have 
been introduced. Examples are G[pH,pMg], G[<p], 
A\f\, G[r], and U[E]. In a given situation where it is 
clear from the context what intensive variables have 
been introduced by Legendre transforms, U', H', A', 
and G' are used to indicate transformed thermody
namic potentials, and it is not necessary to use the 
notation with brackets. 

(5) The transformed chemical potential of species 
i is defined by 

\ 6ni IS,V,Ti1XjPj \ 6Tii )SJP,njXiPi 
J 1 J J 1 J 

im =m ,x-5) 
\ °ni ITy1UjXiP1 \ 6Tli lT,P,UjXiPj 

where the Pj represents intensive variables that have 
been introduced by Legendre transforms. The j is 
used to indicate that P, is not in the conjugate pair 
with extensive variable Xi. If chemical reactions are 
at equilibrium, amounts of apparent components 
have to be used to express amounts, rather than 
amounts of species. However, the transformed chemi
cal potentials of apparent components are the trans
formed chemical potentials of reactants (sums of 
species). 

(6) Subscripts of partial derivatives are always 
natural variables. It is important to be sure that 
natural variables are independent. For a given 
system, the choice of natural variables may not be 
unique, but the number is. 

Xl. Nomenclature 
Note: When primes are used on thermodynamic 

potentials, it is important to indicate in the context 
the intensive variables that have to be specified. This 
also applies when primes are used on equilibrium 
constants, amounts, or numbers like the number of 
components, degrees of freedom, and stoichiometric 
numbers. SI units are indicated in parentheses. 

a, activity of species i (dimensionless) 
A Helmholtz energy (J) 
A' transformed Helmholtz energy (J) 
As surface area (m2) 
A conservation matrix (C x AO (dimensionless) 
A' apparent conservation matrix (C" x N') (di

mensionless) 
B magnetic flux density (magnetic field strength) 

(T) 
B magnitude of the magnetic flux density (mag

netic field strength) (T) 
C number of components (N — R) (dimension

less) 
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R 
R 

R' 

S 

s{ 
S' 
T 
U 
U' 
UlPi] 

V 
V 
v 

xk 

C" number of apparent components (pseudocom- Pf1 
ponents) (N' - R') (dimensionless) 

c° standard-state concentration (mol L-1) p 
E energy (J) p 
Ek kinetic energy (J) 
E electric field strength (V m-1) p 
E magnitude of the electric field strength (V pH 

m-1) pMg 
f force (N) Q1 
F Faraday (96 485 C mol"1) 
F degrees of freedom (dimensionless) Q' 
F' apparent degrees of freedom (dimensionless) 
g acceleration of gravity (m s-2) r 
G Gibbs energy (J) r, 
G' transformed Gibbs energy (J) 
ArG° standard Gibbs energy of reaction (J mol-1) 
ArG'° standard transformed Gibbs energy of reac

tion at a specified concentration of a species 
(J mol"1) 

A1G' transformed Gibbs energy of reaction at a 
specified concentration of a species (J mol-1) 

h height above the surface of the earth (m) 
H enthalpy (J) 
W transformed enthalpy (J) 
Jj molar enthalpy of i (J mol-1) 
Jj' molar transformed enthalpy of i (J mol-1) 
ArH

a standard enthalpy of reaction (J mol-1) 
ATH'° standard transformed enthalpy of reaction at 

a specified concentration of a species (J 
mol-1) 

AfHi" standard enthalpy of formation of species i (J 
mol-1) 

A{Hi'° standard transformed enthalpy of formation 
of i at a specified concentration of a species 
(J mol-1) 

/ ionic strength (mol L-1) 
K equilibrium constant (dimensionless) 
K apparent equilibrium constant (dimension

less) 
L elongation (m) 
m mass (kg) 
m magnetic moment of the system (J T-1) 
m magnitude of the magnetic moment of the 

system (J T-1) fi{ 
Mi molar mass of i (kg mol-1) 
rii amount of species i (mol) fi 
n amount matrix (N x 1) (mol) ft' 
n{ amount of reactant i (sum of species) (mol) 
na amount of component i (mol) /ic 
nm> amount of B bound in the system (mol) 
N number of species when a single phase is fi'c 

involved and number of species in different 
phases for a multiphase system (dimen- fii 
sionless) 

N' number of reactants (pseudospecies) (dimen
sionless) Vi 

Ni(H+) number of hydrogen atoms in a molecule of i 
(dimensionless) v/ 

2V;(Mg2+) number of magnesium atoms in a molecule of 
i (dimensionless) v 

Ni(H+) average number of hydrogen atoms bound by 
a molecule of i (dimensionless) V 

ArZV(H+) change in the binding OfH+ in a biochemical 
reaction (dimensionless) £ 

ArZV(Mg2+) change in the binding of Mg2+ in a biochemi- | 
cal reaction (dimensionless) 

P pressure (bar) | ' 
Pi partial pressure of i (bar) \' 
P° standard state pressure (1 bar) 
P' partial pressure of species other than the one r 

with a specified pressure (bar) </>; 

Y 
fa 

intensive variable in Callen's nomenclature 
(varies) 

dipole moment of the system (C m) 
magnitude of the dipole moment of the system 

(Cm) 
number of phases (dimensionless) 
-log([H+]/c°) (dimensionless) 
-log([M2+]/c°) (dimensionless) 
electric charge contributed to a phase by 

species i (C) 
reaction quotient at specified T, P, pH, pMg, 

and I (dimensionless) 
distance from the axis of rotation (m) 
equilibrium mole fraction of i within an 

isomer group or pseudoisomer group (di
mensionless) 

gas constant (8.314 51 J K -1 mol-1) 
number of independent reactions (dimension

less) 
number of independent biochemical reactions 

in a system (dimensionless) 
entropy (J K-1) 
molar entropy of i (J K -1 mol-1) 
molar apparent entropy of i (J K -1 mol-1) 
transformed entropy (J K-1) 
temperature (K) 
internal energy (J) 
transformed internal energy (J) 
Callen's nomenclature for the transformed 

internal energy that has intensive variable 
Pi as a natural variable (J) 

volume (m3) 
molar volume (m3 mol-1) 
velocity (m s-1) 
extensive variable in Callen's nomenclature 

(varies) 
number of protonic charges on ion i (dimen

sionless) 
surface tension (N m-1) 
chemical potential of species i (J mol-1); in 

electrochemistry this symbol and name are 
used for the property defined in eq VII-17 
rather than eq VII-4 (kJ mol-1) 

transformed chemical potential of reactant i 
(J mol-1) 

chemical potential matrix (1 x ZV) (J mol-1) 
transformed chemical potential matrix (1 x 

N') (J mol-1) 
component chemical potential matrix (1 x C) 

(J mol-1) 
transformed component chemical potential 

matrix (1 x C) (J mol-1) 
electrochemical potential of i defined by eq 

VII-6 (same definition as fit in eq VII-4) (J 
mol-1) 

stoichiometric number of species i (dimen
sionless) 

stoichiometric number of reactant (sum of 
species) i (dimensionless) 

stoichiometric number matrix (N x R) (di
mensionless) 

apparent stoichiometric number matrix (N' x 
R') (dimensionless) 

extent of reaction (dimensionless) 
extent of reaction matrix (R x 1) (dimension

less) 
apparent extent of reaction (dimensionless) 
apparent extent of reaction matrix (R' x 1) 

(dimensionless) 
shear stress (N m-2) 
electric potential of the phase containing 

species i (V, J C-1) 
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tp gravitational potential (J kg *) 
a> angular velocity (s_1) 
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